A Large-Scale Image Dataset Collected via Google Image Search

Yu Su & Frédéric Jurie

GREYC, University of Caen, France

Outline

- Background
- Collection
- Statistics
- Annotation

- The Quaero Still Images Dataset
 - Ocorpus project, WP 8.1
 - Objectives
 - Provide training and evaluation data for CTC.WP8,
 e.g. scene annotation and object recognition.
 - Should be useful in the application where image content has to be searched.
 - Allow to evaluate automatic annotations tools.

- Some existing image datasets
 - OCalTech-256
 - 256 object categories containing 30,607 images.
 - OPASCAL VOC
 - 20 object categories containing 14,743 images.
 - ImageNet
 - 14,841 concepts organized by WordNet hierarchy.
 - About 10 millions images.
 - O...

- Differences with previous datasets
 - Addressed task: improve the ranking of existing text based image search engines
 - In large scale problem using text to retrieve an initial set of images is reasonable
 - Images can be re-ranked according to their visual content
 - Previous dataset does not include any textual description (contextual information)

- Features of Quaero Still Images Dataset
 - Large scale
 - 518 concepts, ~1,000 images per concepts
 - Diverse concepts
 - Objects, people, scenes, events, ...
 - Collection source
 - Google Image Search
 - Contextual text and images
 - URLs, HTML tags and surrounding words
 - Other images on web pages

- Background
- Collection
- Statistics
- Annotation

Dataset Collection

518 pre-defined concepts*

^{*}cooperating with R. Landais and G. Quénot, some concepts are the same as those in TRECVID

Dataset Collection

Exclude some "bad" concepts

non-consistent visual contents

Extract Contextual Info: An example

image i

concept: dog

page i

http://bipolarblast.wordpress.com/2009/03/27/why-is-the-fact-that-we-all-trip-over-our-dogs-and-cats-such-big-news/

Extract Contextual Info: An example

image i

concept: dog

page i

http://bipolarblast.wordpress.com/2009/03/27/why-is-the-fact-that-we-all-trip-over-our-dogs-and-cats-such-big-news/

Dataset Structure 518 concepts sky dog mug mug unit 1 unit 2 ... unit M unit 1 unit 2 ... unit M

Dataset Structure 518 concepts dog sky mug unit 2 unit 2 -- unit M unit M unit 1 ··· unit // unit 1 unit 2 contextual text contextual images image page & image url title & alg html tag surrounding words

- Background
- Collection
- Statistics
- Annotation

Overview

- 518 concepts containing 484,747 images
- 482,007 pages and 1,543,766 contextual images
- O Data volume: ~170G bytes
- Time cost: ~1500 hours

- 935 returned images per concept
 - For each concept, returned images are less then 1,000 due to bad URLs, unrealistic images and duplications.

- 94% returned images have contextual text
 - Not all the returned images have contextual text due to the bad URLs of some web pages

text percent =
$$\frac{\text{# of images with text}}{\text{# of images}}$$

Example:

dog: 928 images, 892 with text text percent is 892/928=96%

- 59% returned images have contextual images
 - Averagely, each of them have 5 contextual images.

- Background
- Collection
- Statistics
- Annotation

Annotation (not finished yet)

query: dog

~2 hours to annotate each concept

Thanks for your attention!