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Abstract

In this paper we present a combined approach for ob-
ject localization and classification. Our contribution is two-
fold. (a) A contextual combination of localization and clas-
sification which shows that classification can improve de-
tection and vice versa. (b) An efficient two stage sliding
window object localization method that combines the effi-
ciency of a linear classifier with the robustness of a sophis-
ticated non-linear one. Experimental results evaluate the
parameters of our two stage sliding window approach and
show that our combined object localization and classifica-
tion methods outperform the state-of-the-art on the PASCAL
VOC 2007 and 2008 datasets.

1. Introduction
Over the past years, there has been increasing interest

in object category recognition. Two major tasks are im-
age classification and object localization. Image classifi-
cation is defined as the task of assigning an image one
or multiple labels corresponding to the presence of a cat-
egory in the image. Many recent papers exist on this
topic [19, 23, 27, 30] and several evaluation campaigns,
such as TRECVID, Pascal VOC, and ImageCLEF, demon-
strate the good performance of these algorithms. Object lo-
calization detects instances of a given category in the im-
age, in many cases up to a bounding box. Recent techniques
combine efficient image descriptors with machine learning
techniques [5, 7, 12, 13, 18, 28]. The task remains chal-
lenging due to intra-class variations, viewpoint changes and
deformations of the objects.

Even if the two tasks are different, they are obviously
related. If one has a good object detector, it becomes
easy to predict image labels when some objects are de-
tected with high scores (Figure 1-a) . Inversely, knowing
the class of an image can help to detect hardly visible ob-
jects (Figure 1-b). This interdependence has been studied in
context-based approaches, where context can model prop-
erties of the entire image [14, 26], the relationship between
objects [4, 16] or the background surrounding the candi-

(a) (b)

Figure 1. Complementarity of image classification and object lo-
calization: (a) Cars are detected with strong scores, while the im-
age obtained a poor classification score. (b) Cars are detected with
low scores due to partial visibility, but the image got a very high
classification score.

date detections [6]. Convincing results have been obtained
by approaches where the image is segmented into labeled
regions and the labels are used for the localization of sur-
rounding objects [13, 29]. A recent paper [8] presents an
empirical evaluation of the role of context in object de-
tection, evaluating several sources of different context and
ways to utilize it.

Because of the interdependence of the two tasks, the
combination of object detection and image classification
became a topic of interest in the recent literature. Li and
Fei-Fei [20] propose a graphical model of events in images
where event is a latent factor conditioning the generation of
objects and scene categories. Shotton et al. [25] propose a
related idea in the context of image segmentation: the likely
categories are emphasized by multiplying the local segmen-
tation and global image classification distributions. This is
a principle we find again in [13], in another context, for
improving object detections using labels of surrounding re-
gions. We build on the idea that classification and detection
can be considered as independent knowing a latent prop-
erty of the observed scene, leading to a simple but powerful
combination scheme. The main contribution of this paper
is to show that such a combination can improve the results
of state-of-the-art algorithms, both for classification and de-
tection.

This, obviously, requires state-of-the-art approaches for
classification and localization. For image classification we



rely on [22], one of the state-of-the-art approaches of the
PASCAL VOC 2007 and 2008 challenges. For object lo-
calization we build on and improve existing sliding window
approaches [1, 5, 12, 24]. Firstly, we implement an effi-
cient two stage approach which uses a linear support vector
machine (SVM) classifier for pre-selection and a non-linear
SVM for scoring. This allows an excellent trade-off be-
tween speed and accuracy. We believe that our two stage
cascade is simpler than recent cascades [2, 3, 9] while giv-
ing remarkably good results. Secondly, we evaluate exten-
sively different ways of describing the image and propose a
simple and efficient image representation. Our window de-
scriptor builds on recent work [1, 5, 7, 19] and combines the
key ideas of these approaches into a simple but efficient de-
scriptor. A comparison with the state-of-the-art shows that
our detector gives better results for most of the object cate-
gories. This detector represents the second contribution of
the paper.

The paper is organized as follow. Section 2 presents the
datasets used for our experiments. A description of our effi-
cient object detector and its experimental evaluation is given
in section 3. Section 4 then describes the model we propose
for combining classification and localization and evaluates
its performance. Finally, in section 5 we present a compari-
son with the state-of-the-art methods and conclude.

2. Dataset and evaluation criteria
The PASCAL visual object class datasets are today prob-

ably the most widely used reference datasets for category
recognition. Objects are present in realistic conditions un-
der scale, viewpoint and illumination changes as well as
with significant amounts of background clutter, see fig-
ure 4 for an illustration. The PASCAL VOC 2007 &
2008 datasets [10] used in this paper contain twenty ob-
ject classes: person, animals (bird, cat, cow, dog, horse,
sheep), vehicles (aeroplane, bicycle, boat, but, car, motor-
bike, train), and indoor objects (bottle, chair, dining table,
potted plant, sofa and TV/monitor).

The main PASCAL challenge tasks are image classifica-
tion and object localization. Training is in both cases su-
pervised. For object localization the annotations include
the bounding box, the object pose (left, right, front, back,
other) and a flag indicating whether the object is truncated
(only part of the object is visible). Training, validation and
test sets are available for PASCAL VOC 2007, but not for
2008 for which the test annotations have not yet been made
available.1 We, therefore, run our evaluations in sections 3
and 4 on the 2007 dataset. We, then, compare in section 5
to the state-of-the-art on the VOC 2007 and 2008 datasets.

Our performance metrics, both for classification and de-

1An evaluation of the results on the VOC 2008 test set can be obtained
from M. Everingham.

tection, follow the PASCAL VOC ones. The average preci-
sion (AP) is computed from the precision/recall curve and is
an approximation of the area under this curve. The mean AP
(mAP) measures the mean of the APs over all categories.

3. Efficient object localization
Our object localization approach builds on the now stan-

dard sliding window approach [7, 12, 18, 28]. Such an ap-
proach evaluates a score function for all positions and scales
in an image and detects local maxima of this function. Its
performance depends on: (a) an efficient search strategy;
(b) a robust image representation; (c) an appropriate score
function for comparing candidate regions with object mod-
els; (d) a multi-view representation and (e) a reliable non-
maxima suppression.

Our approach has two contributions: a robust window
representation and an efficient search strategy. For all the
remaining components we use the standard techniques. Our
two contributions are described and evaluated below.

3.1. Image representation

Our approach uses two complementary descriptors,
shape and appearance descriptors described in the follow-
ing. The combination of the two descriptors is presented
and evaluated in the next section.

Shape descriptor (HOG). The shape descriptor is a his-
togram of oriented gradients (HOGs) [7]. We apply the fast
HOG implementation of [31]: after quantizing the gradient
orientation at each pixel, we compute and store an integral
image for each discrete orientation. These integral images
are used to efficiently compute the HOG for any rectangular
image region, i.e., in 4×number of orientations
basic operations.

The division of the description window into sub-
windows (or tiles) is referred to as geometry. The geometry
is determined by three main parameters: (1) The number
of tiles that determine the resolution of the tiling. (2) The
organization of the tiles which can be adapted or regular.
Adapted tiles are as square as possible and are obtained as
follows: given the average aspect ratio of the object cate-
gory and the number of desired tiles T , we seek to have

tiles that are as square as possible with round(
√

TW
H ) tiles

along the width, and round(
√

TH
W ) along the height. Reg-

ular tiles are taken on a grid with the same number of tiles
along the height and the width. (3) The overlap between
tiles: when overlapping, a tile shares 50% of its surface with
each of its four neighbors .

We build different configurations with the number of
tiles ranging from 40 to 350, with overlapping or not over-
lapping tiles, and with adapted or regular grids. We eval-
uate these configurations with the filtering classifier (linear



kernel). To compare the results obtained with the differ-
ent configurations, we perform the Friedman statistical test.
This test, based on the ranks on the different classes, sepa-
rates the configurations into significantly different sets (here
with probability of 95%).

We obtained 12 groups of equivalent configurations and
observed that the difference between the best and the worst
one results in a significant difference in mAP (7%). Three
main observations are: (1) Tilings should contain at least
150 tiles, but having more has no impact. (2) Tiles should
be overlapping; we observed a difference up to 3% just by
adding the overlap between tiles. (3) Tiles should be as
square as possible, but the difference is less significant.

We also evaluated the influence of the number of discrete
HOG orientations. We used several configurations where
the number of bins varied from 8 to 32 with signed or un-
signed orientations. Using signed orientations appeared to
be better (+1.3%), 16 bins outperformed 8 bins by 3% and
32 bins lead to the same performance as 16.

Appearance descriptor (BOF). The appearance de-
scriptor builds on the spatial pyramid over quantized SIFT
descriptors [19]. We first extract multi-scale patches from
the image and describe them using the SIFT descriptor [21].
The descriptors are then quantized into visual words using
k-means and a histogram of visual words summarizes the
content of the window. Instead of building one global his-
togram for the window, we compute one histogram per tile,
using the spatial pyramid tiling. This technique consists in
partitioning the image into increasingly finer subregions and
computing histograms of local features inside each subre-
gion.

We vary the level of the pyramid and calculate the mAP
on the PASCAL VOC 2007 dataset. Using only one level
leads to poor results, the mAP is less than 3%. Using two
levels rises the mAP to 7.6% and the best configuration uses
3 levels, resulting in a mAP of 15%. Adding more lev-
els does not improve the results further. These experiments
were obtained with a linear classifier and a visual vocabu-
lary of 100 words.

We observe that the BOF descriptor performs slightly
better than the HOG (14.6% mAP against 15%, see table 1).
On the other hand, the BOF descriptor with 3 levels is more
expensive computationally as well as memory-wise.

Normalization of the descriptors. Normalization of the
descriptors makes them robust to contrast changes (HOG)
or to scale changes (BOF and HOG). Previous work [7, 31]
showed that local L1 and L2 norms give comparable results.
In the following, we use the L2 norm, which can be used in
different ways. We can either normalize each cell or per-
form a global normalization of the descriptor. It is also pos-
sible to not normalize the descriptor at all. Experimental re-
sults show that (a) not using any normalization reduces the
results by 14% (HOG) and 4% (BOF) and (b) the per tile

normalization is about 2% better than global normalization
for both HOG and BOF.

3.2. Two stage object localization

3.2.1 Search strategy

As the number of windows per image is huge, a technique
for reducing this number should be applied. While some
authors suggest methods avoiding to scan exhaustively the
image [5, 17], the most popular technique is the cascade,
introduced by Viola and Jones [28]. It decomposes a strong
classifier into several classifiers arranged in a cascade, each
of which decides if the window contains the object or not.
This type of approach has received a lot of attention dur-
ing the past five years [2, 3, 9, 31]. Cascades have, how-
ever, several limitations. Training a cascade is slow, taking
on the order of weeks; determining the target false positive
rate and detection rate at each stage in the cascade is often
empirical; and finally, a cascade always reduces the overall
performance.

We propose to use a very simple but efficient two stage
cascade. We first apply a linear SVM for each window of
the image. This is fast due to the simplicity of the classifier
and the use of fast descriptors implemented with integral
images. We then apply the final score function (a non-linear
SVM with a χ2 kernel) only on candidate regions, i.e., those
that obtained good scores during the first stage. Our exper-
imental results confirm that this approach has an excellent
trade-off between speed and accuracy.

3.2.2 Linear classifier

The filtering classifier is a linear SVM classifier that is used
to rapidly scan the image and reject windows unlikely to
contain objects. Its performance depends on the data used
to train it. We artificially increase the positive training set by
following a procedure proposed by Laptev [18]. The nega-
tives examples are obtained by an iterative procedure. The
initial training set consists of randomly chosen background
windows and objects from other classes. The resulting clas-
sifier is used to scan images and select the top false positives
or hard examples. These hard examples are added to the
negative set and a new classifier is learned. This procedure
is repeated several times to obtain the final classifier.

The performance of the filtering classifier is reported in
Table 1. The mAP is 14.6% for HOG features and increases
by 3% when combining HOG and BOF features. The com-
bination is obtained by concatenating the two feature vec-
tors.

However, the main interest of a filtering classifier is its
ability to filter out the majority of the windows, the scoring
classifier being applied only on the remaining small fraction
of these windows. It is, therefore, more important to mea-
sure the capability of the linear classifier to select windows



plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP

Linear, HOG 10.0 27.8 04.7 00.6 11.4 31.7 33.9 02.6 10.1 14.9 09.7 01.8 28.1 22.6 12.2 09.9 10.0 04.3 19.3 26.1 14.6
Linear, BOF 16.9 21.2 04.9 04.8 07.3 25.2 28.4 06.9 09.8 10.3 06.7 06.9 30.5 26.6 13.1 09.4 12.5 12.1 17.0 28.5 15.0

Linear, HOG+BOF 22.4 30.5 03.3 01.8 11.2 26.4 36.7 06.0 11.1 14.3 10.9 07.6 33.8 27.2 14.7 09.8 15.1 14.7 22.4 32.2 17.6
χ2, HOG 18.4 39.5 09.8 02.0 18.2 42.2 47.5 02.5 13.6 22.1 10.5 10.7 43.5 34.6 14.5 11.7 12.7 14.2 31.8 37.2 21.9
χ2, BOF 29.8 33.3 11.1 04.2 09.5 39.7 42.3 14.4 12.7 20.4 13.3 15.5 40.5 37.6 16.8 11.4 19.8 18.8 34.4 35.6 23.1

χ2, HOG+BOF 33.8 43.0 09.7 09.6 18.7 41.9 50.4 15.0 14.6 23.9 15.1 15.4 48.2 41.7 20.2 16.1 21.2 20.3 29.1 38.2 26.3

Table 1. Localization performance on PASCAL VOC 2007 for the different image representations with/without using the non-linear scoring
classifier.
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Figure 2. Maximum recall versus number of windows per image
for filtering with a linear SVM with HOG and/or BOF features.
Results are presented for PASCAL VOC 2007.

than to measure its mAP, even if the two are related. We
measured this capability with two criteria: (1) The highest
recall the scoring classifier can reach using the top N win-
dows selected by the linear classifier, for different values
of N . Results are given Figure 2. (2) The mAP obtained
by the scoring classifier if only the top N windows are se-
lected. These results are reported in Figure 3 for filtering
with a linear SVM + HOG and scoring with χ2 SVM with
HOG & BOF features.

From these experiments, we can draw two conclusions.
First, we observe that the different possible descriptors
(HOG, BOF or the combination of the two) give similar re-
sults in terms of the highest possible recall, see Figure 2.
Therefore, we use in the filtering stage the least expensive
descriptor, i.e., HOG. Second, the mAP does not progress
significantly for value above N = 100.

3.2.3 Improvement due to non-linear classifier

The scoring classifier is based on a non-linear SVM with
a χ2 kernel: K(x, v) = exp(−γch.dχ2(xch, vch)) where
γch is a channel dependant parameter, xch and vch are the
components of vectors x and v corresponding to the channel
ch, here shape (HOG) or appearance (BOF), and dχ2 is the
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Figure 3. mAP of the scoring classifier (χ2 kernel + SVM with
HOG & BOF features) versus number of windows per image se-
lected by the filtering classifier (linear SVM and HOG features).
Results are presented for PASCAL VOC 2007.

χ2 distance defined by

dχ2(x, v) =
N∑

i=1

(xi − vi)2

|xi + vi|
. (1)

The γ value is defined by the heuristic of [30] as follows:

γ =
Nb∑Nb

i=1

∑Nb
j=1 dχ2(xi, xj)

, (2)

where Nb the number of training examples and xi the
ith training example.

To train the scoring classifier, we use the same positive
training examples as for the filtering classifier. For the nega-
tive examples, we do not find additional hard examples due
to the computational cost, but use the negative examples of
the filtering classifier (background windows and hard exam-
ples) to which we add a large number (here 70K) of back-
ground windows.

Table 1 shows the performance increase due to the non-
linear scoring stage. The table reports the results obtained
using a χ2 kernel and three different descriptors combina-
tions when filtering with a linear SVM + HOG and keeping
200 windows per image. The best mAP (26.3%) is obtained
for the combination of HOG and BOF. Using only one of



these representations reduces the performance by more than
3%. The improvement due to the non-linear classifier is
very significant (8.7%).

Note that there is also an increase of performance when
combining HOG and BOF for a linear SVM classifier. The
combination of the two features allows to improve detection
score, but does not help to improve the filtering efficiency
of the linear SVM, see figures 2 and 3.

3.3. Discussion

Our final detector, i.e., χ2, HOG + BOF, gives excel-
lent results on the PASCAL VOC 2007 database (see Ta-
ble 1, bottom line). The proposed detector is efficient due to
the two stage sliding window algorithm and its results com-
pare favorable to the state-of-the-art. Experimental results
show the benefit of using complementary image descriptors.
Figure 4 shows a few localization examples. The first row
shows two correctly detected objects, while the second row
shows two strong false positives. Interestingly, the detector
confuses a bus with a car and includes context information
in the case of chairs. The last row shows missed objects and
illustrates the complexity of the task: the car is very small
and the chair hardly visible.

4. Contextual combination of localization and
classification

In the following we describe our approach for combining
localization and classification and present an experimental
validation.

4.1. Our approach

The idea that classification and detection can benefit
from and contribute to each other’s successes relies on the
assumption that they use different information. This as-
sumption can be verified by observing that, often, a single
image is classified differently (i.e. with a significantly dif-
ferent probability) by the detector and the classifier. Fig-
ure 5 shows the probability density of true positives win-
dows (all classes of the Pascal VOC 2007 dataset being
merged) as a function of the probabilities given by the clas-
sifier (applied to the whole image) and the detector (ap-
plied to the window). Interestingly, we can see that our
hypothesis is valid: for many true positives only one of the
modalities has a high probability. Indeed, if an object is
occluded or truncated, it will be hardly detectable by the
detector while the classifier could still have enough infor-
mation (context, object parts) to decide on the presence of
the object. Inversely, if the object is small and appears in a
non standard context, the detector will still be able to find it
while it would be non-detectable for the classifier (see Fig-
ure 1 for an illustration). We also observed (not shown on

Car Chair

(a) Good localizations

(b) Strong false positive

(c) Missed objects

Figure 4. Localization examples for the classes car and chair with
our detector (χ2, HOG + BOF) on PASCAL VOC 2007. (a) Exam-
ples of objects correctly detected. (b) Examples of false positives
with high score. (c) Examples of objects that were missed.

Figure 5. Probability density of true positive windows, as a func-
tion of the probabilities given by the image classifier and the object
detector. Warm (resp. cold) colors mean high (resp. low) densities.
Results are presented for the PASCAL VOC 2007 dataset.

the figure) that for most false positives both probabilities are
low.

In the following, we construct a model for combining lo-



plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP

Localization 58.2 59.5 19.3 26.9 37.5 60.8 80.2 36.7 39.3 40.7 28.3 35.2 67.9 63.8 74.0 38.4 40.1 35.7 56.7 54.3 47.7
INRIA Flat V2 76.7 64.4 55.8 69.3 34.1 62.6 76.0 58.4 55.9 44.3 60.3 48.3 77.4 63.5 85.7 42.9 48.3 49.0 76.4 54.5 60.1

Product 75.0 69.0 51.7 67.7 48.8 68.7 83.3 54.6 57.6 53.7 56.6 46.4 78.7 69.4 84.8 51.8 54.4 55.5 73.0 62.8 63.2
Our combination 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1 62.2 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5

Table 2. Image classification performance on the PASCAL VOC 2007 dataset obtained by localization and classification methods (1st and
2nd rows) and by combination (last 2 rows).

plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP

Our detector 33.8 43.0 09.7 09.6 18.7 41.9 50.4 15.0 14.6 23.9 15.1 15.4 48.2 41.7 20.2 16.1 21.2 20.3 29.1 38.2 26.3
Context of [11] 35.4 44.7 10.6 05.5 20.3 42.1 50.7 18.7 16.2 26.2 14.2 16.3 49.0 42.9 20.5 17.0 23.4 21.0 30.7 39.3 27.2

Product 33.9 40.7 10.8 11.9 22.7 36.8 47.1 18.7 17.4 31.9 17.0 16.5 48.0 38.1 20.9 18.4 26.6 23.6 28.6 37.2 27.3
Our combination 35.1 45.6 10.9 12.0 23.2 42.1 50.9 19.0 18.0 31.5 17.2 17.6 49.6 43.1 21.0 18.9 27.3 24.7 29.9 39.7 28.9

Table 3. Object localization performance on the PASCAL VOC 2007 dataset obtained by our two stage detector alone (1st row) and
combined with context (last 3 rows).

calization and classification results that takes into account
this notion of detectability. Let us denote P (Di) as the
probability that the presence of an object can be detected by
the classifier applied to the entire image. In the same way,
P (Dw) is the probability that the presence of an object can
be detected by the sliding window detector. We obtain an
approximation of the conditional probability P (O|Di, Si),
where Si is the score of the classifier, by histogramming the
scores of positive and negative training examples. Objects
of all training images are assumed to be detectable. This
gives us the probability of having the object in the image
knowing it is detectable. In the same way, we compute an
approximation of P (O|Dw, Sw), the probability of having
an object knowing the score Sw of the sliding window de-
tector and assuming it is detectable.

Formally, the probability of having an object in the im-
age, given the classification score, is therefore

P (O|Si) = P (Di)P (O|Si, Di) + P (Di)P (O|Si, Di) (3)

and similarly, the probability of having an object in a win-
dow given the detection score is

P (O|Sw) = P (Dw)P (O|Sw, Dw) + P (Dw)P (O|Sw, Dw)
(4)

where P (O|Si, Di) (resp. P (O|Si, Dw)) is the probabil-
ity that the object is present when it is not detectable by our
image classifier (resp. object detector). They are supposed
here to be constant values.

The final probability is task dependent. For the localiza-
tion task, we consider the score Sw of the window obtained
by the detector as well as the score Si of the image obtained
by the classifier, and compute the probability of having an
object in the window as:

P (O|Sw, Si) ∝ P (O|Si)× P (O|Sw). (5)

For the classification task, we consider the score of the win-
dow having the best score, denoted Sbw, as well as the score
Si obtained by the image classifier. The probability of hav-
ing an object in the image is then computed as:

P (O|Sbw, Si) ∝ P (O|Si)× P (O|Sbw). (6)

For our experiments, conditional probabilities
P (O|Si, Di), P (O|Si, Dw) as well as the priors P (Di) and
P (Dw) are constant values obtained by cross-validation,
i.e., we take the values that maximize the AP on a validation
set.

4.2. Experiments

Classification experiments. We compare the classifi-
cation performance obtained by our detection framework,
by the INRIA Flat V2 approach and by the combination of
both. To obtain classification scores based on detection we
keep for each object class only the best scored window in
the image. The INRIA Flat V2 approach [22], for which
we have obtained the results (classification scores) from the
authors, is based on the work of [30], i.e., it integrates a
set of different image features with a χ2 kernel. V2 signi-
fies the version used in the PASCAL VOC 2008 challenge
which adds additional channels to the 2007 version and im-
proves the performance. Table 2 shows the results for the
PASCAL VOC 2007 dataset. The first row is obtained by
detection. In terms of mean average precision (mAP), it
gives poor results. However, for some classes it gives very
good results and even outperforms the INRIA Flat V2 (sec-
ond row) approach, namely for the classes car and bottle.

When combined (“Our combination”), we observe a
significant gain of 3.4% in term of mAP over the IN-
RIA Flat V2 classifier. Furthermore, for some classes (e.g
bottle, plant) we observe a gain of 10% in AP which repre-
sents a significant improvement. The row “Product” shows



the results obtained with a simpler combination rule where
we multiply the two probabilities. As expected, the results
are not as good as with our combination method. We also
evaluated other combination methods such as the MIN or
MAX rules [15], and an SVM classifier for a prediction
based on two scores. All of them performed slightly worse
than our approach.

Detection experiments. We compare the results ob-
tained by our detector to combinations with the classifica-
tion score given by the INRIA Flat V2 classifier. Table 3
presents the results. The first row gives the average pre-
cision obtained by our detector, the third one shows results
for a combination performed by simply computing the prod-
uct of the two probabilities, and the last one present the re-
sults of our method. Our method improves the results of
the base detector by 2.6%. Best improvement are observed
for the animal classes cow (7.6%) and sheep (6.1%) as well
as for indoor classes bottle (4.5%) and chair (3.4%) which
suggests that the context information offers most of the im-
provement.

The results submitted by the authors of [11] to the PAS-
CAL VOC 2008 used contextual information to reweight
detection scores: the final score is computed from the ini-
tial score, the position of the window and the best detection
scores in the image for all the other object categories. The
results given by this approach, reported Table 3-row 2, show
that the information due to the image classifier is more use-
ful than the contextual information due to object detections
of other categories.

5. Comp. with state-of-the-art & Discussion
As stated in the introduction, we believe that to clearly

demonstrate the importance of contextual information or
of any combination of methods we need to experimentally
demonstrated that it produces results better than existing
state-of-the-art methods. Starting from any baseline algo-
rithm and improving its performance is indeed easy. Sur-
passing state-of-the art results is more difficult.

Classification. Table 4 compares our method to the five
top methods of the PASCAL VOC 2008 challenge [10]. The
mAP we obtain is 57.7%, which improves by 2.8% over
the best competing approach. Furthermore, our approach
obtains best results for 13 out of 20 categories. On the
PASCAL VOC 2007 dataset we obtain 63.5%, see table 2.
Compared to the results obtain in the 2007 challenge, we
improve by 4.1% in terms of mAP over the best method
and obtain best performance on 15 out of 20 classes.

Localization. We compare our localization performance
to the best results of the PASCAL VOC 2008 challenge [10]
in Table 5. Compared to these results, we achieve best per-
formance for 11 out of 20 classes and obtain results compa-
rable with the method [11].

On the PASCAL 2007 VOC dataset, we obtain 28.9%

mAP, see table 2. When compared to the challenge results
in 2007, we obtain the best performance for 18 out of 20
classes and a gain of 11.8% in mAP with respect to the best
method. This confirms the big improvement of localization
methods over the past year.

Discussion. This paper has shown that there exists a po-
tential for combining the presence and location of objects,
resulting in a significant improvement of classification and
localization performance. We also introduced an efficient
two stage sliding window detector. Future work will ex-
plore the combination of different types of information. We
will, for example, investigate image classification methods
that explicitly take into account the results of an object de-
tector, i.e., for example by griding the image based on the
detected region.
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