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Abstract

The aim of this work is to learn a shape prior model
for an object class and to improve shape matching with the
learned shape prior. Given images of example instances,
we can learn a mean shape of the object class as well as
the variations of non-affine and affine transformations sep-
arately based on the thin plate spline (TPS) parameteriza-
tion. Unlike previous methods, for learning, we represent
shapes by vector fields instead of features which makes our
learning approach general. During shape matching, we in-
ject the shape prior knowledge and make the matching re-
sult consistent with the training examples. This is achieved
by an extension of the TPS-RPM algorithm which finds a
closed form solution for the TPS transformation coherent
with the learned transformations. We test our approach by
using it to learn shape prior models for all the five object
classes in the ETHZ Shape Classes. The results show that
the learning accuracy is better than previous work and the
learned shape prior models are helpful for object matching
in real applications such as object classification.

1. Introduction
Many object categories can be accurately represented by

their shapes. Shape is a very powerful description of object
appearance for detection methods [16, 21] with high preci-
sion. In this work, we are interested in learning a class-
specific shape model from a collection of real images be-
cause it (a) makes the model more adapted to real images
and (b) can be applied on a large number of categories with-
out requiring a human definition of shapes.

Many recent papers propose methods for learning a
model made of edge features [13, 15, 20]. However, edge
based models and shapes are not the same because a simple
collection of edge features can only provide a local perspec-
tive of the shape while the global perspective is missing. For
this reason, the arrangement of the edge features, such as the
pairwise interactions between edge features [13] or the rel-
ative positions of edge features with respect to the centroid
of the shape [15], is exploited to improve the edge based
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Figure 1. Illustration of the learning process. The first column
shows the original training images. The objects are annotated
with yellow bounding boxes. The second column shows the edge
maps inside the bounding boxes generated by [14]. The third col-
umn displays the aligned shapes represented by vector fields after
similarity (or non-similarity) transformations. The fourth column
shows the inferred mean shape. There are two iterative processes
between columns 3 and 4. One is alignment by similarity transfor-
mations and the other is the refinement by non-similarity transfor-
mations. The last column shows the final mean shape.

models. An edge based model can be learned from real im-
ages and refined to obtain a shape [9]. One advantage of our
learning approach over [9, 15, 16, 21] is that we propose to
learn directly the shape from images, so the constraints or
flexibility given by the model can be used during learning,
avoiding the complex strategies of [20] or [13].

As proposed by [3], one reasonable approach to learn the
shape model from examples is to first compute the “mean
shape” (first order statistics). The mean shape is formulated
as the optimal solution to minimize a cost function. This
cost function can be the dissimilarity measure between the
mean shape and all training shapes. Different cost functions
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lead to different optimization frameworks. However, it is
difficult to learn shape models from real images because of
(a) scene clutter and (b) intra-class variations of the shape.
The combination of these two issues makes the complexity
combinatorial. Due to the large number of possible shapes
and images, it is not tractable to try each possible hypoth-
esis to find the optimal solution. For this reason, almost
all the methods for learning shape models have been ex-
perimented on clean training data (images without clutter)
[7, 17, 18]. Contrary to these approaches, the method we
propose is very robust to clutter.

Therefore, to find the mean shape, there are two impor-
tant questions to answer: (1) how to design the cost function
and (2) how to find tractable optimization schemes when
the mean shape is formulated as the solution to minimize
the designed cost function. The answer to the first question
clearly depends on the representation of the training images.
Using edge points [2, 3, 4, 5, 7, 17, 18] is often the preferred
choice but points alone are not very informative (the opti-
mization can be slow and have many local minima). Using
more complex features is possible (for example, PAS [9],
fragments [15] or shape context [1]), but they are vulnerable
to edge clutter and are often object specific. Furthermore,
according to [21], complex features often only postpone the
complexity problem. To deal with clutter in the training im-
ages, we use orientation plus edge points because this com-
bination is local (clutter has almost no effect), generic and
the orientation is helpful to remove clutter. To our knowl-
edge, oriented edge points have not been used in the shape
learning and matching literature despite their simplicity and
the robustness. “Edgelet features” [19] are similar to what
we propose, but they are only defined for short lines and
segments. One of our contributions is to reformulate the
definition given by [3] in order to include a shape distance
using edge orientation. As for the second question, instead
of looking for the global minimum of the cost function, we
compute a local minimum with an extension of the well-
known TPS-RPM method [4] which allows to find corre-
spondence and transformations between shapes represented
by point sets. As it is used in [1,4,5,7], it alternates between
a phase where correspondences are produced, assuming the
transformation is known, and the other phase where the
transformation is computed assuming the correspondences
are known. In contrast with all the previous approaches,
we propose a closed form solution of the alignment prob-
lem. When the initialization is approximately correct, our
approach generally converges to an acceptable solution even
if the number of outliers is large.

For object classes with large intra-class variance, learn-
ing only a mean shape is not enough because it is also im-
portant to learn possible deformations from the mean shape
(second order statistics). The advantage of using multiple
training images to build the model is that it can handle more

clutter and learn priors on shape deformations. Two shapes
are similar if one can be transformed into the other by rota-
tion and translation as well as non-rigid transformation with
respect to priors (otherwise all shapes are similar). Various
shape priors [1,2,5,6,7,12,17,18] have been proposed in re-
cent years in different contexts. Some of them consider the
amount of transformation allowed or “smoothness” of non-
rigid transformations [1,18] while other methods apply sta-
tistical analysis on training shapes based on a specific shape
representation [2, 7, 17]. The most widely used method
is probably the Active Shape Model (ASM) [6] where the
shape prior is learned by the Principal Component Analysis
(PCA) on the training shapes represented by point sets and
the shape matching in a test image is iteratively refined with
respect to the learned transformations. In the same spirit, we
propose a novel shape prior which can treat non-affine trans-
formations and affine transformations independently based
on the TPS parameterization [8]. In contrast with all these
previous methods we compute the deformation priors not on
point sets but directly in the transformation space. It has the
advantage to decouple affine and non-affine priors. More-
over, this new shape prior model enables us to extend the
TPS-RPM method and to find a closed form solution for the
TPS transformation during shape matching.

We demonstrate that our learned shape models can im-
prove recognition results on the realistic ETHZ dataset for
both object classification and boundary localization, using
training data annotated with bounding boxes.

The rest of the paper is organized as follows. Section 2
gives a short review of the TPS-RPM method since it will
be used later. In section 3 we detail the learning process of
the shape prior model which will be applied to shape match-
ing in section 4. The experimental results are presented in
section 5 and final conclusions are given in section 6.

2. TPS-RPM
Given two point sets Z = {zk}K

k=1 and X = {xl}L
l=1

in 2-D, the TPS-RPM by Chui and Rangarajan [4] matches
Z and X by a nonrigid TPS transformation f represented
by {w, d} where w represents the K × 3 nonrigid trans-
formation matrix and d denotes the 3 × 3 affine trans-
formation matrix. Using homogeneous coordinates where
zk = (1, zkx, zky), the transformation is

f(zk, d, w) = zk · d+ φ(zk) · w (1)

where φ(zk) is a 1 × K vector representing the TPS ker-
nel. The matching algorithm alternates between updating
the correspondence M = {mkl} for each pair of zk and xl

and updating the transformation f . In each iteration, after
the correspondence M is updated, the point within X cor-
responding to zk is estimated as

yk = ΣL
l=1mklxl. (2)



Then a mapping function f(zk) is fitted between {yk} and
{zk} by minimizing the following objective function

ETPS(f) = ΣK
k=1||yk − f(zk)||2 + λ

∫ ∫
[(
∂2f

∂x2
)2 + ..

2(
∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2]dxdy. (3)

We substitue Eqn. (1) into Eqn. (3) and obtain

ETPS(f) = ||Y −ZMd+Φw||2 +λ · trace(wT Φw) (4)

where Y and ZM are concatenated versions of the point co-
ordinates yk and zk, and Φ is a K × K matrix formed by
φ(zk). The second term is a constraint on the transforma-
tion based on smoothness.

To find the best least-squares solutions for the pair
{w, d}, a QR decomposition is used to separate the affine
and non-affine transformations,

ZM = [Q1Q2]
(
R 0
0 0

)
(5)

where Q1 and Q2 are orthonormal matrices. R is upper tri-
angular. Setting w = Q2γ can separate the warping into
affine and non-affine subspaces. The separation is very im-
portant and will be used to construct our shape prior model
in section 3.5. With the QR decomposition, Eqn. (4) can be
rewritten as

ETPS(γ, d) = ||QT
2 Y −QT

2 ΦQ2γ||2 + λγTQT
2 ΦQ2γ

+||QT
1 Y −Rd−QT

1 ΦQ2γ||2. (6)

The final solution for w and d are given as

ŵ = Q2(QT
2 ΦQ2 + λI(K−3))−1QT

2 Y,

d̂ = R−1(QT
1 Z − Φŵ)

where I denotes the identity matrix.

3. Learning a shape prior model
3.1. Shape representation and mean shape

Our shape representation is based on a vector field
~V (x, y). As stated in the introduction, the advantage of us-
ing vectors instead of points to represent shape is that the
orientation information can make the representation more
robust to clutter. An image is first preprocessed by the
Berkeley edge detector [14]. Then the shape in the image
is represented by an oriented edge map (ψ(x, y), s(x, y))
where ψ(x, y) ∈ [0, π) denotes the orientation of the point
(x, y) and s(x, y) ∈ [0, 1] denotes the edge strength. If
point (x, y) is an edge point, its orientation ψ(x, y) is de-
cided by the orientation of the edge if there is. If it is not an
edge point, the orientation is decided by that of its closest

oriented edge point. If it is a singular edge point without
any neighboring edge points, the orientation is resolved by
neighboring non-edge points whose orientations have been
decided by other oriented edge points.

For ease of statistical analysis on circular data, the orien-
tation ψ(x, y) is scaled by two to fit the range [0, 2π) [11]
and the shape representation for an image can be written as
a vector field ~V (x, y) = {VX(x, y), VY (x, y)} where

VX(x, y) = s(x, y) · cos(2ψ(x, y)), (7)
VY (x, y) = s(x, y) · sin(2ψ(x, y)). (8)

The distance between two shapes is defined as the dis-
tance between their vector fields ~V1 and ~V2, i.e.,

D(~V1, ~V2) =
∫

x

∫
y

||~V1(x, y)− ~V2(x, y)||2dxdy. (9)

Given a set of training images with bounding boxes
which contain instances of the object. Let ~Vi denotes
the oriented edge map within the ith bounding box (i =
1, . . . , N ). We define their mean shape ~V0 as the shape
which minimizes the following energy function

E1 = ΣN
i=1[(D(~V0, Ti(~Vi)) + g(Ti)] (10)

where each Ti is a transformation of an image, which can
be nonrigid. Ti(~Vi) represents the vector field of the trans-
formed shape by applying Ti on ~Vi. The second term g(Ti)
is a constraint on transformation Ti.

The goal of our shape learning process is to find the mean
shape as well as the associated transformations {Ti}. To
achieve this, we divide the learning process into two stages.
First align the training shapes by similarity transformations
only. Second consider the non-similarity transformations
with the TPS parameterization.

3.2. Shape alignment by similarity transformations

To find the mean shape and best similarity transforma-
tions to minimize the energy function E1, we use an algo-
rithm which alternates between two steps:

• Given a mean shape ~V0, find the best similarity trans-
formation Si between each training shape ~Vi and ~V0.

• Given the transformed shapes {Si(~Vi)}, find ~V0.

The first step is searching in a 4-D parameter space because
a similarity transformation includes 2-D translation, rota-
tion and scaling. We search the optimal solution by the
gradient descent method. The second step can be done by
taking the average of the transformed shapes as the mean
shape, i.e.,

~V0(x, y) =
1
N

ΣN
i=1Si(~Vi(x, y)). (11)
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Figure 2. (a)-(c) Different mean shape estimations (a) by edge
points without orientation; (b) by the average of vector fields from
aligned training shapes; (c) cleaned up by the statistics of the vec-
tors based on (b); (d) Extracted point set from (c).

The above alignment process starts with the mean shape
as the average of the initial training shapes {~Vi} and stops
when the improvement on E1 is below a threshold.

Given that the training shapes are annotated with bound-
ing boxes, it is easy to normalize the training bounding
boxes with respect to scaling and translation [9]. However,
removing rotation differences remains important to align
the training shapes. The above alignment process aims to
remove all three differences.

3.3. Mean shape generalization

Once the training shapes are aligned by similarity trans-
formations {Si}, we can generate an initial mean shape
~V0 based on the statistics of the vectors Si(~Vi(x, y)) for
each point (x, y). The heuristic is that if a point is an
edge point in the mean shape, the training shapes are ex-
pected to agree on both (a) the edge strength and (b) the
edge orientation. The second condition can successfully
remove the noisy points because many of them can agree
only on edge strength but not on orientation. Specifically,
for each point (x, y), we view the corresponding vectors
{Si(~Vi(x, y))}N

i=1 as observations of a variable ~V0(x, y) as-
sumed to be following a 2-D Gaussian model. Then we take
the expected mean value as ~V0(x, y).

After this clean-up process, only edge points with a con-
sensus view from training shapes remain in the cleaned
mean shape. Fig. 2 (a)-(c) show different mean shape es-
timations from edge points without orientations and with
orientations (before and after clean-up).

3.4. Shape refinement by TPS transformations

To consider the non-similarity transformations, we ex-
tract a set of model points from the mean shape generated
in section 3.3 (Fig. 2 (d)) and match the point set back to the
aligned training shapes {Si(~Vi)}, using an extension of the
TPS-RPM [4]. We extend the original objective function
Eqn. (3) by considering the difference between vectors of
matched points besides the Euclidean distance and find the

(c)(a) (b) (c) (d)

Figure 3. Improved mean shapes by shape refinement over 4 itera-
tions for swans.

(a) First mode of non-affine variations of swans

(b) Second mode of non-affine variations of swans

Figure 4. Modes of variations for non-affine transformations. The
middle column is the mean shape.

TPS transformation between shape model points and edge
points in the test image. Similar to the shape alignment, the
shape refinement also alternates between two steps:

• Given a mean shape, find a TPS transformation fi be-
tween each aligned training shape Si(~Vi) and the ex-
tracted point set from the mean shape.

• Given the transformed shapes fi(Si(~Vi)), find the
mean shape by the method in section 3.3.

The improvement on the mean shape found by the shape
refinement is usually significant during the first few itera-
tions (Fig. 3) and then becomes small later. We observe that
the number of refinement iterations needed depends on the
intra-class variation. Object classes with large intra-class
variance require more iterations than those with small vari-
ance. In practice, we refine the mean shape 2–5 times.

3.5. Learning a shape prior model

After shape refinement, we can examine the learned TPS
transformation parameters {wi, di} for each training shape.
Set wi = Q2γi and let ~γi be the vectorization of the last
two columns of γi. Applying PCA on {~γi} enables us to
capture the variety of non-affine deformations in a low di-
mensional space (npc ≤ 15) where npc denotes the number
of principal components. Each ~γi can be approximated by

~γi =
npc∑
j=1

αi,jΓj + ~γ0 (12)

where Γj denotes the jth principal component of ~γ with co-
efficient αi,j and ~γ0 is the mean of {~γi}. Each non-affine



transformation is represented by αi = {αi,j}. We can also
apply PCA on affine transformation parameters {di} and
have similar results but the number of principal components
is smaller (≤ 6) than that of non-affine transformations.
In particular, if we ignore translation, there are at most 4
principal components for affine transformation parameters.
Specifically, let µ denote the 6-D affine transformation pa-
rameter vector, µ = d(:, 2 : 3). And let θ denote the 4-
D affine transformation parameter vector without transla-
tion, θ = d(2 : 3, 2 : 3). Notice that θ = Hµ where
H = [0 0 I4]4×6. Let β denote the coefficients of principal
components of θ which are represented by Θ. Then each θ
can be approximated as

θ =
4∑

j=1

βi,jΘj + θ0 (13)

where θ0 is the mean of {θi}. The covariance matrix of α
and β are represented by Σα and Σβ respectively. From the
above, we construct a shape prior model which includes the
mean shape, and variations of affine and non-affine trans-
formations from the mean shape. Fig. 4 shows the first two
modes of variations for non-affine transformations within
object class “swans”.

4. TPS-RPM with shape prior
Based on the shape prior model, each variation of the

shape can be represented by a pair of parameters (w, d) and
further by (α, µ) based on PCA analysis. For a test image
window represented by ~V , the probability that there is a
shape represented by (α, µ) is given by

P (α, µ|~V ) =
P (~V |α, µ)P (α, µ)

P (~V )
(14)

and the best estimation of α and µ is given by

(α∗, µ∗)

= argmax
α,µ

logP (α, µ|~V )

= argmax
α,µ

[logP (~V |α, µ) + logP (α, µ)]

= argmax
α,µ(β)

[logP (~V |α, µ) + logP (α, β)]

= argmax
α,µ(β)

[logP (~V |α, µ) + logP (α) + logP (β)]

The first term reflects the influence from the data and the
other two are regularization terms based on the non-affine
prior and affine prior.

Notice that the original TPS-RPM objective function
Eqn. (3) (also the variation in [18]) has a regularization term
for transformation f based on a “smoothness” constraint.

However, with the training shape examples, we can improve
the TPS-RPM matching with a more accurate shape prior
model based on the PCA on non-affine and affine transfor-
mation parameters in section 3.5. Therefore, we design a
new energy function for shape matching as follows:

E2 = Eeuc + λ1Evec + λ2Ena + λ3Ea (15)

where Eeuc and Evec denote the Euclidean distance and
vector distance between matched points respectively. Ena

and Ea denote the amount of non-affine transformation
and affine transformation (without translation) respectively.
They are measured based on the shape prior model. Specif-
ically, following [4], the function can be written as

E2 = ||Ay −B~γ||2 + ||QT
1 Y −Rd−QT

1 ΦQ2γ||2 ..
+λ1Evec + λ2α

T Σ−1
α α+ λ3β

T Σ−1
β β (16)

where

A =
(
QT

2 0
0 QT

2

)
, B =

(
QT

2 ΦQ2 0
0 QT

2 ΦQ2

)
and y is a vectorization of the coordinates of matched points
in the normalized test image or y = Y (:, 2 : 3).

To get the best α, assume that the items ||QT
1 Y − Rd−

QT
1 ΦQ2γ||2 and λ1Evec are approximately zero if λ1 and

λ3 are very small. The part of the energy function which is
dependent on α is

E2(α) = ||Ay −B~γ||2 + λ2α
T Σ−1

α α

= ||Ay −B(Γα+ ~γ0)||2 + λ2α
T Σ−1

α α.

Let ∂E2(α)
∂α = 0, and we have

α∗ = (ΓTBTB · Γ + λ2Σ−1
α )−1ΓTBT (Ay−B~γ0). (17)

With α∗ , the part of the energy function dependent on µ is

E2(µ)
= ||C −Rd||2 + λ3β

T Σ−1
β β

= ||~C −Gµ||2 + λ3β
T Σ−1

β β

= ||~C −Gµ||2 + λ3(Hµ− θ0)T ΘΣ−1
β ΘT (Hµ− θ0).

where G =
(
R 0
0 R

)
, C = QT

1 (Y − ΦQ2γ
∗), γ∗ is

computed from α∗ by Eqn. (12) and ~C6×1 is the vectoriza-
tion of last two columns of C.

Let ∂E2(µ)
∂µ = 0, and we have

µ∗ = (GTG+ λ3H
T ΘΣ−1

β ΘTH)−1

·(λ3H
T ΘΣ−1

β ΘT θ0 +GT ~C). (18)

From the above, we can see that the learned shape prior
model can be incorporated into the TPS-RPM process with-
out explicitly referring to the shape prior model like the



constrained TPS-RPM proposed by Ferrari et al. [9]. They
constrain the shape matcher to search only within a “valid”
region of shapes which is determined by the principal com-
ponents of the matched point sets from training examples.
This method can avoid implausible shapes outside of the
“valid” region. However, the shapes inside the “valid” re-
gion are not guaranteed to be consistent with the training
shapes. As shown in Fig. 5, we can see the difference be-
tween the three different matching methods. Fig. 5 (a) is
the matching result from original TPS-RPM [4] using the
model points learned by our approach. Fig. 5 (b) displays
the matching result from the constrained shape matching
method by [9]. You can see that both output shapes are dis-
tracted to the clutter inside the bottle due to the reflection.
Although the output shape in Fig. 5 (b) is twisted, it is not
far from the model shape (within the “valid” region) and
therefore can survive. Fig. 5 (c) shows our matching result
which is robust to the clutter. More comparisons on shape
matching between [9] and our method are shown in Fig. 8.

(a) (b) (c)

Figure 5. Comparison of different shape matching methods based
on the same initialization. (a) Output shape with original TPS-
RPM [4] using the mean shape learned by our method. (b) Output
shape with the constrained TPS-RPM [9] using their learned shape
model. (c) Output shape obtained with our shape matching method
using our learned shape prior. The shape models used by [9] and
by our method are learned from the same training data.

5. Experiments
We evaluate the proposed shape learning and shape

matching methods based on the ETHZ shape classes [9]
containing five diverse object classes with 255 images in
total. Some classes such as giraffes and swans are very
challenging because they have significant intra-class vari-
ations. Moreover, some objects are partially occluded or
surrounded by background clutter.

5.1. Shape Learning

The experimental setup is same as [9]. For each object
class, we learn 5 different shape models by sampling 5 sub-

Figure 6. Mean shapes obtained with 5 training sets for each of the
5 object classes in the ETHZ data set.

sets of half of the class images at random. Fig. 6 shows the
25 mean shapes learned from the training data. We evalu-
ate the learning accuracy following the measure proposed
in [10]. Let Bt be the ground truth boundary and Br be the
aligned shape output by the shape refinement in section 3.4.
Coverage is the percentage of points from Bt closer than a
threshold t from any point of Br. Precision is the percent-
age of points from Br closer than t from any point of Bt.
Table 1 shows the comparison between the average learn-
ing accuracy of our method over training instances and tri-
als, and the results reported in [10]. Both methods set t as
4% of the diagonal of the bounding box of Bt. Our learned
shape models are more accurate in terms of both coverage
and precision for the first three classes. As for the other two
classes (mugs and swans), our coverage is slightly worse
but the precision is better. The reason is that some of our
mean shapes learned from these two classes are not com-
plete. For example, the second mean shape for mugs in
Fig. 6 leaves out a small piece of the boundary just below
the handle because many training images don’t contain the
edge information there due to shadow.

5.2. Shape Matching

To test the proposed shape matching method with prior
described in section 4, we first use the learned shape prior
models to localize the object boundaries within ground truth
bounding boxes in positive test images (the other images in
the same object class excluding the training set) and com-
pare the matching accuracy to the method [9, 10]. Fig 8
shows some example comparisons of the matching results.
In general, our shape matching results are more robust to
clutter and consistent with training examples. In the match-
ing experiments, we only use the non-affine shape prior be-
cause the affine prior knowledge is very limited due to the



Applelogos Bottles Giraffes Mugs Swans
Our learning results 93.0 / 98.1 97.6 / 91.4 81.0 / 81.8 92.1 / 93.1 87.0 / 88.4

Learning results from [10] 90.2 / 90.6 96.2 / 92.7 70.8 / 74.3 93.9 / 83.6 90.0 / 80.0

Our matching results 95.5 / 98.9 89.1 / 90.3 77.7 / 79.5 80.0 / 86.5 77.8 / 84.2

Matching results by [10] 92.9 / 95.4 86.8 / 82.1 71.8 / 73.1 84.4 / 81.4 82.8 / 76.1

Table 1. Learning and matching accuracy. The first row are our learning results and the second row are the results from [10]. The third
row are our matching results and the last row are the results from [10]. Each entry is the average coverage/precision over trials and
training/testing instances.

fact that most images in ETHZ shape classes are well ori-
entated (not rotated). Therefore it is too restrictive to apply
the learned affine prior (without rotations) to match test ex-
amples (with rotations). Instead of using the learned affine
prior we constrain the norm of affine matrix as in [4]. Ta-
ble 1 shows a comparison with [10]. Our matching results
are better for the first three classes. For mugs and swans,
our coverage is worse but the precision is higher due to the
missing parts of the mean shape as explained in section 5.1.

To test whether the shape prior models can help object
classification, we generate negative test examples randomly.
For each training set which is half of the class images, we
choose the other images in the same object class and half of
the class images from each of the other four classes as test
images (127 test images). For each test image, we crop 10
regions which include the ground truth windows containing
the object as well as random samples from the background.
For each learned shape model, there are 1270 test examples
in total among which about 20 to 40 examples are positive
depending on the object class. We apply both our matching
method and the constrained shape matching in [9] on all the
test examples.

We score each output shape obtained with our method by
a weighted sum of five terms: (1) The number of matched
model points. (2) The Euclidean distance between mapped
model points and their corresponding test image points. (3)
The amount of affine transformation, i.e., the norm of the
affine matrix d. (4) The amount of non-affine transforma-
tion evaluated by the learned non-affine prior, αT Σ−1

α α in
Eqn. (16). (5) The vector response between the mean shape
~V0 and the aligned test shape Ti(~Vi). The idea is similar to
Chamfer matching, but instead of the Chamfer distance, we
take the sum of dot products of corresponding vectors, i.e.,

V R =
∫

x

∫
y

~V0(x, y) · Ti(~Vi(x, y))dxdy. (19)

If the orientations of two corresponding vectors are the
same or close, their dot product is positive. If their orienta-
tions are opposite, it will be negative. The larger the vector
response is, the higher score the matching will get. We do
not use the distance between vector fields as in Eqn. (9) in
order to avoid the influence of noisy edges. Criteria (1)-(3)
are also used in the score function [9]. But their measure

Figure 7. Classification results for 5 object classes.

for non-rigid transformation follows the “smoothness” cri-
terion, i.e., the term trace(wT Φw) in Eqn. (4) instead of the
learned non-affine prior that we used. By checking the con-
sistency of orientations, criterion (5) is designed to remove
false positive matches which can fool criteria (1)-(4).

Fig. 7 evaluates and compares the object classification
performance of our approach and [9]. Our approach per-
forms significantly better for all five classes which shows
that using the deformation prior learned from training im-
ages and considering the orientation consistency in the
score function improves the classification accuracy.

6. Conclusion
In this paper, we first presented a novel approach to

learning shape prior models from images annotated with
bounding boxes. Based on the shape representation of ori-
ented edge points, our learning process is robust to clutter.
The shape prior learned by our approach is a prior on shape
deformations which can separate the non-affine transforma-
tion and affine transformations based on the TPS parameter-
ization. This is very useful to learn the intra-class variabil-
ity of the shape. Second, we applied the learned shape prior
model during shape matching based on TPS-RPM frame-
work and found a closed form solution for TPS transforma-
tion. We illustrated our approach on datasets of real images
and the experimental results show that our approach can im-
prove both learning accuracy and matching accuracy com-
pared to previous work. The learned shape prior models



Figure 8. Comparisons between the shape matching results from
[9] (green, left) and from our approach (purple, right).

have also been demonstrated to be useful to improve object
classification performance.
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