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Abstract. This paper describes the participation of UNI-
CAEN/GREYC to the ImageCLEF 2011 photo annotation task.
The proposed approach uses visual image features and binary annota-
tions of concepts only. In this approach, the annotations are predicted by
SVM classifiers trained separately for each concept. The classifiers take
Bag-of-Words histograms and fisher vectors representations as inputs,
both being combined at the decision level. Furthermore, contextual
information is also embedded into the Bag-of-Words histograms to
enhance their performance. The experimental results show that the
combination of Bag-of-Words histograms and Fisher vectors brings
significant performance increase (e.g. 4% for Mean Average Precision).
Furthermore, the results of our best-run rank in top 3 for both concept
and image level evaluations.
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1 Introduction

The aim of the ImageCLEF 2011 photo annotation task is to automatically assign
to each image a set of concepts taken from a list of 99 possible pre-defined visual
concepts. In this task, the participants are given 8000 training images associated
with the corresponding 99 binary labels, each of which corresponds to a visual
concept, as well as the photo tagging ontology, EXIF data and Flickr user tags. In
the test phase, the participants are requested to give to each test image the labels
of all the visual concepts describing the image. The evaluation of performance
is done at concept and image levels. For the former, Mean Average Precision
(MAP) is computed for each concept. For the latter, F-Measure (F-ex) and the
Semantic R-Precision (SR-Precision) are computed for each image. For more
details on this task, please refer to [7] .

In our participation, we did not use photo tagging ontology, EXIF data and
Flickr user tags. Our results are only based on visual image features. Specif-
ically, we extracted different types of local features (e.g. SIFT) from images
and then adopted Bag-of-Words (BoW) model to aggregate local features into
a global image descriptor. Our participation is mainly inspired by the work of
Su and Jurie [11], which proposed to embed some contextual information into



the BoW model. In addition, some improvements over [11] are also proposed.
Indeed, Fisher Vectors (FV) have been reported to give good performance on
both object recognition and image retrieval tasks [9]. Thus, we also computed FV
from images and combined them with the context-embedded BoW histograms at
decision level, i.e, training classifiers for Fisher Vectors and context-embedded
BoW histograms separately and combining classifiers by averaging their out-
puts. As to photo annotation, the above process is performed for each concept
independently and the averaged classifier outputs are used as the confidences of
concept occurrence.

The organization of this paper is as follows: In section 2, we describe local
features used in our method. Then, we explain how to combine BoW model with
both semantic contexts (section 3) and FV (section 4). Experimental evaluation
is given in section 5, followed by a conclusion in the last section.

2 Visual Features

In our method, 6 kinds of visual features are extracted from each image, which
are introduced in the following paragraph. Before feature computation, the im-
ages are scaled to be at most 300× 300 pixels, with their original aspect ratios
maintained. Except for LAB features which encode color information, color im-
ages are first transformed to grayscale.

SIFT Vector quantized SIFT descriptors [6] are computed for 5000 image
patches with randomly selected positions and scales (with scales from 16 to
64 pixels), and are quantized to 1024 k-means centers.

HOG HOG descriptors [3] are densely extracted on a regular grid at step of
8 pixels. On each node of the grid a 31 dimensional descriptor is computed and
then 2× 2 neighboring descriptors are concatenated to form a descriptor of 124
dimensions. HOG features are finally vector quantized to 256 k-means centers.

Textons Texton descriptors [12] are generated by computing the output of
36 Gabor filters with different scales and orientations for each pixel, and then
quantized to 256 k-means centers.

SSIM Self-similarity descriptors [10] are computed on a regular grid at step of
five pixels. Each feature is obtained by computing the correlation map of a patch
of 5× 5 in a window with radius of 40 pixels, then quantizing it in 3 radial bins
and 10 angular bins, obtaining 30 dimensional descriptor vectors. Self-similarity
features are finally quantized to 256 k-means centers.

LAB LAB descriptors [4] are computed for each pixel and then quantized to
128 k-means centers.

Canny Canny edge descriptors [1] are computed for each pixel and then quan-
tized to 8 orientation bins.

Finally, concatenating all BoW histograms gives a 1928-dimensional feature
vector which can describe an image or a image region.



3 Image Representation by Embedding Semantic
Contexts into BoW Model

In this section, we first review how do we define the semantic contexts and
embed them into BoW model as introduced in [11]. Then we introduce our
improvements over this method.
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Fig. 1. Grouped semantic contexts and some illustrative training images [11]. The
values between brackets are the number of semantic contexts within corresponding
groups.

3.1 Semantic Context

In [11], 110 semantic contexts are defined by hand with the intention of providing
abundant semantic information for image description. (see Fig. 1). Two types
of contexts are distinguished: global contexts including global scenes and local
contexts including local scenes, colors, shapes, materials and objects.

For each semantic context, we learn a SVM classifier with linear kernel (here-
after called as context classifiers). For the global contexts, the classifiers are



learned on whole images described by BoW histograms. For the local contexts,
the classifiers are learned on some randomly sampled image regions described
again by BoW histograms. The training images are automatically downloaded
from Google image search by using the name of context as query. After the man-
ual annotation, about 400 relevant images are reserved for each context. They
are used as positive images for the corresponding context while images from the
other contexts are considered as negatives.

In test phase, images (for global contexts) or regions (for local contexts) are
input to context classifiers and a sigmoid function is used to transform the
original decision values to probabilities (refer to [2]).

3.2 Embedding Semantic Contexts into BoW model

Assume that, for an image I, a set of local features fi, i = 1, . . . , N are extracted
from it, where N is the number of local features. The BoW model consists of
V visual words vj , j = 1, . . . , V . The traditional BoW feature for vj measures
the occurrence probability of vj on image I, say p(vj |I). In practice, p(vj |I) is
usually computed by:

p(vj |I) =
1

N

N∑
i=1

δ(fi, vj), (1)

where

δ(fi, vj) =

{
1 if j = arg min

j=1,...,V
d(fi, vj)

0 else
(2)

and d is a distance function (e.g., the L2 norm).

Marginalizing p(vj |I) over different local contexts gives:

p(vj |I) =

C∑
k=1

p(vj |ck, I)p(ck|I), (3)

where ck is the k-th context, C is the number of local contexts (75 in our case),
p(vj |ck, I) is the context-specific occurrence probability of vj on image I, p(ck|I)
is the occurrence probability of context ck on image I.

On the other hand, the second term of Eq. 3, which gives the distribution
of different contexts on image I, can also provide rich information to describe
the image, as shown by [13]. For example, knowing an image is composed of one
third of sky, one third of sea and one third of beach, brings a lot of information
regarding the content of this image. At the end, images are eventually represented
by multiple context-specific BoW histograms, i.e., p(vj |ck, I) and a vector of
context-occurring probabilities, i.e., p(ck|I).

In [11], p(vj |ck, I) is constructed by modeling the probabilistic distribution
of context ck on image I which is estimated by dividing image I into a set of
regions Ip and predicting the occurrence probabilities of ck for each region (by



using context classifiers). By denoting Ip(fi) the set of image regions which cover
the local feature fi, we define:

p(vj |ck, I) =
1

N

N∑
i=1

δ(fi, vj)p(ck|Ip(fi)), (4)

where p(ck|Ip(fi) can be considered as the weight of local feature fi. In practice,
p(ck|Ip(fi)) is computed by averaging the outputs of the context classifier (for
ck) on Ip(fi).

As to p(ck|I), it can be easily computed by averaging the outputs of the
context classifiers (for ck) on all image regions in Ip. This process is similar to the
computation of p(ck|Ip(fi)) in previous subsection. In addition, we also represent
image I by the occurrence probabilities of global contexts. These probabilities are
computed by running the corresponding context classifiers on the whole image.
Finally, an image is represented by concatenating the occurrence probabilities
of both global and local contexts, i.e.,

(p(c1|I), . . . , p(cC |I), p(cC+1|I), . . . , p(cC′ |I)),

where C ′ is the number of all contexts (110 in our case) and C is the number of
local contexts (75 in our case). We call this image descriptor as semantic features.

3.3 Our improvements over [11]

The above subsection reviewed the process of constructing context-specific BoW
histograms introduced in [11]. For our participation to the ImageCLEF 2011
photo annotation task, some improvements over this method are proposed. First,
we learn a specific vocabulary for each semantic context rather than use a uni-
form vocabulary for all contexts as in [11]. Second, instead of selecting a single
context for each visual word as in [11], we train a classifier for each context-
specific BoW histogram and then combine all the classifiers. Detailed implemen-
tation of these two improvements are given in the following paragraph.

In the traditional vocabulary learning process, local features extracted from
a set of images are randomly (or uniformly) sampled and then vector quantized
to get visual words. Differently, when learning our context-specific vocabulary,
the sampling of local features is based on the distribution of this context on
images. Specifically, more local features are sampled at the image regions with
higher context-occurring probabilities (brighter image regions in Fig. 2). In prac-
tice, this process is implemented by assigning each local feature fi a probability
p(ck|Ip(fi)) (defined in section 3.2) and sampling local features based on their
probabilities, which is formulated as follows.

s(fi) =

{
1 if p(ck|Ip(fi) ≥ ri
0 else

(5)

where s(fi) indicates whether the local feature fi is selected or not and ri are
random numbers which are uniformly sampled between 0 and 1.



After sampling local features for each context, k-means is used to build mul-
tiple context-specific vocabularies. An image is then represented by multiple
context-specific BoW histograms. The construction of context-specific BoW his-
togram is the same as that in 3.2 (see Eq.4)

Concatenating all the context-specific BoW histograms leads to a very high
dimensional feature vector (in our case 1928× 75=144,600D). Thus, we train a
classifier for each context-specific BoW histogram and combine the classifiers by
averaging their outputs.
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Fig. 2. Combination of BoW model and semantic contexts. For an image, multiple
saliency maps are generated by both context classifiers and SPM channels, with which
multiple BoW histograms are constructed by weighting local features according to
saliency maps. After that, multiple classifiers are learned, each of which corresponds
to a BoW histogram. In addition, the occurrence probabilities of semantic contexts
(also referred as semantic features) are predicted for the image, for which a classifier
is learned. Finally, all the classifiers are combined by averaging their outputs.

Recall that the way we embed contextual information into BoW model is
based on weighting local features (see Eq.4). It is similar to the well-known
spatial pyramid matching (SPM) [5] which divides an image into grids and build
a histogram for each grid. This process can be also considered as weighting local
features: for certain grid, the weights of the local features within it is set to 1



and the weights of other local features are set to 0. Although less flexible than
context-based weights, the binary weights in SPM are more stable which is also
favorable. Thus, we also train classifiers for BoW histograms of SPM channels.
In our method, a three level pyramid, 1× 1, 2× 2, 3× 1 (totally 8 channels) is
used. It is worthwhile to point out that, different from traditional SPM, we learn
a specific vocabulary for each SPM grid based on local features within this grid.

Finally, we train a classifier for the semantic features and combine it with the
classifiers for context-specific BoW histograms and SPM channels by averaging
their outputs. For both BoW histograms and semantic features, classifiers are
learned by SVM with chi-square kernel. The whole process is illustrated in Fig.2.

4 Image Representation by Fisher Vectors

Similar to the BoW model, Fisher Vectors [8] can also be used to aggregate
local features into a global descriptor which is called Fisher Vectors (FV). FV
can be considered as an extension of BoW histograms. They encodes how the
parameters of the model should be changed to represent the image, rather than
only consider the number of occurrences of each visual word as in BoW model.
In our participation, we adopted the improved FV as introduced in [9] which is
shown to outperform BoW histogram on some large-scale image retrieval tasks.

For an image, we computed the FV for each kind of local features except
Canny for which no actual visual word exist. As in [9], a three level pyramid,
1 × 1, 2 × 2, 3 × 1 (8 channels in total) is used to enhance the performance of
fisher vector.

For SIFT and HOG descriptors, PCA is used to reduce the dimension of
descriptors to 64. For SIFT descriptors, a 64-centroid Gaussian mixture model
(GMM) is computed to construct fisher vector whose dimensionality is there-
fore 64 × 64 × 8 × 2 = 65, 536. For HOG, Texton, SSIM and LAB descriptors,
64-centroid GMMs are learned therefore the dimensionalities of fisher vector for
these descriptors are 16,384, 9,216, 7,680 and 768 respectively. Then we train a
classifier (SVM with linear kernel) for each fisher vector and combine all classi-
fiers by averaging their outputs. The whole process is illustrated in Fig.3. Please
note that the semantic contexts are not used for this representation.

5 ImageCLEF Evaluation

In our participation, we submitted four runs to the photo annotation task. In
this section, we describe these runs and compare their performances with other
visual-only runs.

5.1 Description of Our Runs

Run 1: MultiFeat Chi2SVM In this run, context-specific BoW histograms,
each of which corresponds to a semantic context, as well as the semantic features
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Fig. 3. Image representation and classification based on fisher vectors of multiple types
of local features. The values in brackets are the dimensionalities of corresponding Fisher
Vectors. After training a classifier for each Fisher Vectors, multiple classifiers are com-
bined by averaging their outputs.

are used to describe images. As illustrated in Fig.2, we trained separated clas-
sifiers (SVMs with chi-square kernel) for both context-specific BoW histograms
and semantic features and then combine them by averaging their outputs.

Run 2: BoW+FisherKernel In this run, we combined all the classifiers in
run 1 and classifiers for fisher vectors of different features (refer to Fig.3). The
combination is performed by averaging the outputs of all classifiers.

Run 3: SVMOutput In this run, the confidences of all 99 concepts obtained
from run 2 are used as a new image descriptor. A classifier (SVM with chi-square
kernel) is learned on this descriptor and used to give the confidences of concepts.
By doing so, we hope to benefit from the correlation of different concepts.

Run 4: BoW+FisherKernel+SVMOuput In this run, we averaged the
confidences obtained from run 1, 2 and 3.

In our participation, we used the implementation of LIBSVM [2] to learn SVM
classifier. The value of the SVM parameter C and the normalization factor γ
of chi-square kernel are determined by fivefold cross-validation. As to the image
regions used for learning local context classifiers and generating saliency maps,
on each image we sampled 100 regions with random positions and scales (with
scales from 20% to 40% of the image size).

For concept level evaluation, the classifier outputs are used as confidences
directly. For image level evaluation, the real valued confidences are binarized by
a threshold which is determined by fivefold cross-validation for each run.



5.2 Results of Our Runs

The performances (MAP, F-ex and SR-Precision) of our runs are listed in Table
1. It can be concluded that the performance of context-specific BoW histograms
is significantly enhanced by combining them with fisher vectors. It is worthwhile
to point out that, according to our experiments on training data, the performance
of fisher vectors alone is comparable to that of context-specific BoW histograms.
Another conclusion drawn from Table 1 is that using classifier outputs as new
features does not bring any improvement. Thus we need to design more powerful
methods to utilize the correlation of concepts.

Runs MAP F-ex SR-Precision

MultiFeat Chi2SVM 34.2 56.0 69.4
BoW+FisherKernel 38.2 60.0 72.7
SVMOutput 34.5 49.1 65.1
BoW+FisherKernel+SVMOuput 38.2 59.2 72.5

Table 1. MAP, F-ex and SR-Precision of our runs. For each measure, values in bold
indicate the best performance of 4 runs.

For more detailed result, Fig.4 gives the MAPs of 99 concepts obtained from
Run 2. For some concepts, the MAPs are very low, e.g. less than 10%. The
reason is either that the concept is hard to predict (e.g. abstract) or that the
number of training samples is quite small (e.g. only 12 images are annotated
with skateboard).
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Fig. 4. The MAPs of all 99 concepts obtained from Run 2.

Finally, we compare our best run (Run 2: BoW+FisherKernel) with the best
runs (visual-only) of several competitors. It can be seen from Table 2 that no run
gave the best result for both concept and image level evaluation. For concept level



evaluation (MAP as performance measure), TUBFI scores performed best, while
for image level evaluation (F-ex and SR-Precision as performance measures),
ISIS runpa-UvA-coreA performed best. Our best run ranks in the second place
for both MAP and F-ex and the third place for SR-Precision.

Runs MAP F-ex SR-Precision

BPACAD bpacad avg cns 36.7 56.8 72.9
ISIS runpa-UvA-coreA 37.5 61.2 73.4
LIRIS 4visual model 4 35.5 53.9 72.5
TUBFI scores 38.8 55.2 62.1

Our best run 38.2 59.2 72.5

Table 2. MAP, F-ex and SR-Precision of our runs. For each measure, values in bold
indicate the best performance of 4 runs. Our best run ranks in the second place for
both MAP and F-ex and the third place for SR-Precision.

6 Conclusion

In our participation to the ImageCLEF photo annotation task, multiple visual
features were used for representing the images. We embedded contextual infor-
mation into the traditional Bag-of-Words model and further combined it with
fisher vector which has been shown to have good performance on image classifi-
cation and retrieval tasks. The evaluation results showed that the performance
of the Bag-of-Words model can be significantly enhanced by combining it with
semantic contexts and fisher vector. Our best run gave 38.2%, 59.2% and 72.5%
for MAP and F-ex and SR-Precision respectively, while the best results of visual-
only runs are 38.8%, 61.2% and 73.4% respectively.
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