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Abstract. This paper proposes a new approach for Cross Modal Match-
ing, i.e. the matching of patterns represented in different modalities,
when pairs of same/different data are available for training (e.g. faces of
same/different persons). In this situation, standard approaches such as
Partial Least Squares (PLS) or Canonical Correlation Analysis (CCA),
map the data into a common latent space that maximizes the covariance,
using the information brought by positive pairs only. Our contribution is
a new metric learning algorithm, which alleviates this limitation by con-
sidering both positive and negative constraints and use them efficiently
to learn a discriminative latent space. The contribution is validated on
several datasets for which the proposed approach consistently outper-
forms PLS/CCA as well as more recent discriminative approaches.

1 Introduction

This paper addresses Cross Modal Matching (CMM), which is the task of pre-
dicting whether a pair of data points, coming from two different modalities,
represents the same object. Many computer vision tasks are related to CMM,
such as face recognition (e.g. photos vs. sketches, high-resolution photos vs. low-
resolution photos, front vs. profile, etc.) or person re-identification across multi-
ple cameras. In addition to computer vision, many other fields are interested in
CMM, since when observations comes from different devices or are represented
in different ways (e.g. textual description vs. image) a link has to be established
between them if they are to be compared.

As explained in the next section, one can distinguish two main ways for
addressing CMM. First, mapping (or synthesizing) the data represented in one
modality onto the other modality makes all the data comparable. Second, it
is also possible to learn a common latent space, different from the two initial
representation spaces, and independently project the data, from the original
(distinct) spaces into the new space, making them directly comparable. The
work presented here follows the second way.

More specifically, we are interested in the tasks for which we have training
data that can be used to optimally relate the two modalities. We consider the
case where training data are given as two sets of data points, in two different
modalities, related through a set of pairwise matching/non-matching constraints.



2 Alexis Mignon and Frédéric Jurie

negative pair
\=
/8 g L mapping Latent space

QS ) spaceY

Fig. 1. Cross Modal Matching: Two sets of data points in two different spaces X (pho-
tos) and Y (sketches) are related through a set of pairwise positive/negative constraints.
We learn a common latent space in which distances reflect the constraints.
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E.g. for face verification with photos and sketches, training pairs are sets photo-
sketch pairs of same person, as well as photo-sketch pairs of faces of different
persons, as illustrated Fig.1. We refer to them later as positive and negative
constraints respectively. Note that the pairwise constraint setting is very general
since it includes, for instance, problems in which class labels are known. In this
case pairwise constraints are known for all possible pairs.

Finding common latent spaces for CMM is an important issue and has there-
fore received a lot of attention. Several very popular approaches have been
proposed, such as Canonical Correlation Analysis (CCA) [1] and Partial Least
Squares (PLS) [2]. All of them aim at finding two projection matrices that lead
to maximal covariance in the latent space, under the positive constraints given
by the training data. For instance, CCA computes two projections that minimize
the distance between positive pairs in the latent space.

One severe drawback of these approaches is that they ignore the negative
constraints, i.e. the constraints defined by pairs of different objects. However,
for many tasks, those negative constraints are available and using them can
definitely bring some benefits in terms of performance. Some recent approaches
have used both constraints [3,4] but they suffer from different limitations (see
next section). Overcoming these limitations is precisely the aim of this paper.

This paper proposes a metric learning approach that takes advantage of both
positive and negative constraints, for cross modal matching. The key idea is
to learn a latent space shared by both modalities in which similar objects are
closer than different objects. The proposed approach is validated on 3 different
datasets for different cross-modal face recognition tasks: on CUFSF [5] for face
vs. sketch recognition, on Multi PIE [6] for cross pose face recognition, and on
LFW [7] for face verification using different face descriptors. These experiments
demonstrate that using negative constraints improves the performance of cross-
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modal matching, and show that the proposed algorithm consistently outperforms
existing competing latent space learning algorithms such as CCA and PLS.

2 Related works

Considered as being an important problem, Cross Modal Matching (CMM) has
already received a lot of attention in the literature. Works can be organized into
two domains: on one side those that map data of the first modality into the space
of the second, and, on the other side, those building a common latent space in
which both modalities are projected before they can be compared.

When data represented in the first modality are mapped into the second
modality, the synthesized data can then be directly compared into the second
space. For instance, [8] maps near infrared images to visible images; in addition
of allowing the direct comparison of the two modalities, a human operator can
also analyze more easily the images. In the same way, [9] and [5] synthesize face
sketches from photographs to perform direct comparison between sketches.

When the two modalities are close enough, applying specific filters can dras-
tically reduce the differences between them and eventually make them directly
comparable [10,11]. However, this strategy can be used only in very specific
contexts.

Despite the good results obtained by synthesis-based approaches, they are
usually ‘task specific’ in the sense that the synthesis framework needs to be
redefined for each new problem, if possible at all. Consequently, these methods
do not generalize well to new problems. It explains why most of the works,
including ours, focus on defining common latent projection spaces.

The latent representation approach assumes that observations in both modal-
ities can be explained by a reduced set of common latent variables. They often
rely on popular statistical tools such as Canonical Correlation Analysis (CCA) [1]
or Partial Least Squares (PLS) [2], which aim at finding the latent representa-
tion by maximizing covariance in the latent space. The main difference between
these two methods lies in the constraints controlling the quality of the recon-
struction in the original space [12]. PLS was recently used in [13] for different
cross-modal matching tasks (face sketch/photo recognition, low /high-resolution
matching, cross-pose recognition) for which it was shown to be competitive with
other ad-hoc methods [9,11]. CCA was used in [14] to recognize occluded faces
by matching non-corresponding parts of the faces (e.g. eyes and nose). In [15],
sketches and face images are encoded so that the two representations of the
same training person are identical. This is achieved by learning a tree structure
in which nodes project a subset of the sketch and photograph features into a
common space using CCA. The method was reported to give state-of the art
results on the CHUK Face Sketch FERET database (CUFSF).

These covariance-based methods, by construction, ignore the negative con-
straints, i.e. the constraints given by pairs of non-matching points. Addressing
this issue, [16] suggests to apply linear discriminant analysis (LDA) in each
input space, and learn the common latent space with CCA, in the context of
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infra-red/visible face matching. [17] adopts a similar strategy but introduces cou-
pling terms to perform the two LDA simultaneously. These two methods use the
discriminative information in the initial input spaces, while it would be more
appropriate to integrate it directly with the construction of the latent space.
This is precisely what [18] does, by deriving an equivalent of LDA directly in
the latent space, in such a way that projection and discriminant analysis are
performed simultaneously. The common point between this method and the two
previous ones is that they all rely on LDA and thus require the data to be fully
annotated i.e. classes and class memberships must be explicitly defined, to be
able to compute the within class scatter matrices. This is often not possible as in
general, only pairwise matching/non-matching information is available, without
any class labeling.

Alternatively, Common Discriminant Feature Extraction (CDFE) [3], as well
as the very similar Discriminant Mutual Subspace Learning (DMSL) [4], can
deal with arbitrary sets of pair-wise constraints directly in the latent space.
They both aim at minimizing distances between positive pairs while maximizing
distances between negative pairs. CDFE also includes some regularization terms
to enforce distance consistency between the input spaces and the latent space.
One severe limitation of this line of works lies in the objective function used to
learn the latent space. While intuitive, maximizing distances given by negative
pairs and minimizing distances given by positive pairs may not be relevant, if two
points of a negative pair are already farther than any pair of points of positive
constraints, pushing them even farther — which is definitively going to happen
since distances corresponding to positive constraints are bounded by zero — does
not improve discrimination and can even lead to over-fitting. We believe the
important information lies in the ‘margin’, i.e. the range of distances for which
negative and positive constraints are close, and not in the farthest points.

Our approach bears similarity with [3] and [4] since we use both positive
and negative constraints to learn a discriminative latent space. However, our
Cross Modal Metric Learning (CMML) method addresses the problem from the
opposite point of view, in the sense that it penalizes inappropriate distances
instead of favoring expected ones. More precisely, we introduce a new objective
function such that distances corresponding to positive pairs are penalized when
they are greater than a threshold while those corresponding to negative pairs
are penalized when they are smaller than the same threshold. This allows to
treat symmetrically positive and negative constraints, since the contribution of
pairs with appropriate distances become quickly insignificant. From this point of
view, CMML adopts an objective function which is in the spirit of the popular
Support Vector Machines or Logistic Regression.

Learning a subspace in which distances reflect a set of similarity constraints
is not new in the monomodal case. Indeed methods such as Neighborhood Com-
ponent Analysis (NCA) [19], Large Margin Component Analysis (LMCA) [20]
and Pairwise Constrained Component Analysis (PCCA) [21] precisely address
this problem. Among these methods PCCA is the only one able to deal with
pairwise constraints and CMML can be seen as the generalization of PCCA to
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cross-modal settings. To our knowledge, this way of extending traditional metric
learning methods to cross-modal problems has not been investigated before.

3 Cross modal metric learning (CMML)

As explained before, our goal is to learn a parametric distance function according
to a set of pairwise matching/non-matching constraints, allowing the comparison
of data lying in two different spaces (modalities). Given two sets of data points
S, = {x;}X+, and S, = {yj}év:yl coming from the two different spaces X and
Y, we want to learn two transformations f4 and ¢gp, parametrized by A and B,
which independently map the points from X and ), to a k-dimensional Euclidean
space Z in which the distance is measured as:

D3 p(z,y) = [|fa(x) — g5 (y)l (1)

Let C be a set of N, constraints given as triplets (7, j; 1) where i (resp. j) is the
index of the i-th (resp. j-th) data sample in S, (resp. Sy). ! is a label indicating
if the elements of the pair (4,j) match (I = 1) or do not match (I = —1). Two
elements match if the two modalities represent the same object (e.g. the same
face). We will refer to these pairs respectively as positive and negative pairs.

To learn the best parameters A and B, we build a loss function penalizing
distances of positive pairs greater than a threshold (arbitrarily set to 1), and dis-
tances of negative pairs smaller than the same threshold. For a (4, j; 1) constraint,
the loss function is:

ls (DA (@i, ;) — 1)) (2)

We use the generalized logistic loss function £5(x) = log(1 + €)/3 instead of
the more straightforward hinge loss function h(z) = max(0,z) to avoid numer-
ical instabilities due to the discontinuity of the gradient during the optimiza-
tion process. ¢g(x) can be seen as a smooth approximation of the hinge loss
function with the parameter 8 controlling the smoothness of the approximation
(limg oo £5(2) = h(x)).

Summing the loss of Eq. (2) for all constraints in C, optimal values of A and
B can be obtained by minimizing the following objective function :

A*, B* = argrxgl’lgﬁ(A, B) (3)
LA,B) = Y (D% p(®iy;) — 1) (4)
(i,5,1)eC

In the following, we address the common case where X = R% and ) = R%
are two Euclidean spaces, and fa(x) = Az and gp(y) = By are two linear
transformations parametrized by the k x d, (respectively k x d,) dimensional
matrix A (respectively B). An extension to the non-linear case for arbitrary
Hilbert spaces X and ) is then proposed, through the use of the kernel trick.
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3.1 Optimization

The optimization is performed using a simple gradient descent scheme, the gra-
dient being:

dl5(A, B
HALL) —2 3 oAz — By, = 1)(Aws — Bupal  (5)
i,5,leC
Vol B) 5 S topli(lAz, — By, ~1)(Az — Byl (©
i,j,lec

The loss function £(A, B) is clearly not convex but our optimization problem
can be reformulated as a low rank factorization of a convex function. By denoting
2T = (2T, y]T) the the concatenation of «; and y; corresponding to the the c-th
constraint of C, and L = [A (—B)] the k x (d; + d,) dimensional matrix where
each row is the concatenation of the corresponding rows of A and B, and by

denoting M = LTL, L(A, B) as:

L(A,B) = ) ls(le(zF LT Lz, — 1)) (7)
c;cl
=) ls(le(zi Mz, — 1)) (8)

Due to the convexity of ¢g(x), Eq. (8) is a convex function of M. From [22] and
[23], we can assert that minimizing Eq. (7) with respect to L, through a gradient
based optimization scheme is equivalent to minimizing Eq. (8) with respect to
M if k > rank(M™*), M* being the actual optimum of Eq. (8).

3.2 Kernel CMML

Comparing descriptions from different spaces through linear combinations may
have no sense in general. Fortunately, the algorithm can be easily generalized
to any pair of Hilbert spaces X and Y by rewriting forumulae so that only the
kernel matrices appear.

Let X (respectively Y') be the matrix where each column is a vector from S,
(respectively S,) and K, = X7 X (resp. K, = YY) the corresponding kernel
matrix. By parameterizing A and B as A = AXT and B = BYT, Ax; (resp.
By;) becomes AXTx; = Ak,; (resp. Bk,;), where ky; (resp. k,;) is the i-th
row (resp. j-th) of K, (resp. K,). So Eq. (4) becomes:

L(A,B) = L'(A,B) = Y t5(I(||Akyi — Bky;|* = 1)) (9)
i,5,1€C
The kernel formulation makes the algorithm formally independent from the

representation chosen, and thus, should be considered as the standard form of
the algorithm.
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Using the gradient formula from eq. (5) and defining the shortcut o, =
os(l(||Atx; — Bry;||> — 1)), we derive the update rule for the gradient descent
scheme from the linear case:

At+1 — At + 277 Zi,j,lec lO’t(AtSCi - Btyj)acZT (10)

At+1XT {— /itXT =+ 27’] Zi,j,lec lO’t(AtXT.’L'i — BtYTyj):L’ZT (11)

where 7 is the adaptation step. Multiplying both sides by X K !, leads to:
At+1 — At + 2n Zi,j,lec lO't(/itkmi — Btkyj)kgle_l (12)

Which is equivalent to use the gradient in eq. (5) right multiplied by K !.
This acts like a preconditioning of the gradient in eq. (5) and leads to better
convergence rates, as shown by [24] in the context of SVM classification.

By observing that k1, K1 = el', where e; is the vector with the i-th element
equal to 1 and all others equal to 0, it appears that only one column of A needs to
be updated for each pair instead of the full matrix in the linear case (Eq. (10)).

This leads to further gain in convergence speed.

4 Experiments

In this section we validate our contribution, the Cross Modal Metric Learning
algorithm (CMML), through different multimodal experiments on three differ-
ent databases: CMU Multi PIE , CHUK Face Sketch FERET (CUFSF) and
Labeled Faces in the Wild (LFW). We report the performance of our approach
on these datasets and provide comparisons with the related approaches that can
work with pairwise constraints (i.e. Canonical Correlation Analysis (CCA) [1],
Partial Least Square (PLS) [2] and Common Discriminant Feature Extraction
(CDFE) [3,4]).

We first describe the databases and the associated experimental protocols,
then give some implementation details and, finally, present the results.

4.1 Databases and evaluation protocols

Multi PIE. CMU Multi PIE (for Pose, Illumination and Expression) [6] con-
tains face images taken under different view points and hence having different
head poses, illumination changes and varying expressions. Fig. 3 shows the lo-
cations and labels of the cameras. Four different acquisition sessions were per-
formed over 5 months.

In our experiments, we use the first session which is the largest one, and keep
only images with frontal illumination and neutral expression. There are 249 per-
sons depicted in this session, viewed under 15 different poses each. Images were
aligned using eyes, nose and mouth corners. A tight crop was also applied to re-
move most of the background. Then, uniform Local Ternary Pattern descriptors
(LTP) [25] were extracted over a uniform grid. Since the size of the so cropped
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Fig. 2. Sample images from Multi PIE, CUFSF and LFW datasets. a) Multi PIE:
cropped images from cameras “05.1” (top row) and “08.1” (bottom row) (see Fig. 3
for more precision on camera positions). b) CUFSF: two cropped faces (top row) and
their corresponding sketches (bottom row). ¢) LFW: two positive pairs.
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1.0 240
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Fig. 3. Multi PIE: camera labels/locations for capturing images. 13 cameras were lo-
cated at head height, spaced every 15°. Two additional cameras (“08_1” and “19_1")
were above the subject, simulating video surveillance cameras. Figure reproduced
from [6].

images is different for each pose (see Fig. 4.1-a for an illustration), descriptors
dimensionality are also pose dependent (from 5664 to 9440 components).

The train set is obtained by randomly choosing 149 persons among the 249,
the 100 remaining ones being assigned to the test set. Negative constraints are
obtained by producing pairs containing two different persons, while positive con-
straints are pairs of the same person. Comparisons between the different methods
are performed using the same amount of positive and negative training pairs.
However, as negative constraints can be generated without limit, we also studied
to what extend this amount affects the results, by randomly generating negative
pairs.

Algorithms are trained for each possible pairs of poses (15 x 14 = 210 pairs),
meaning there is one different latent space for each pair of camera positions.

Performance is evaluated by two different measures. The first one evaluates
the performance in a face retrieval context. Given an image in one view (the
probe) we determine the closest match in a set of images in another view (the
gallery). The classification is correct if the closest gallery image depicts the same
person as the probe. The average number of correct matches over the test set is
reported as the nearest neighbor accuracy. The second measure considers a face
verification context. The test set contains as many positive pairs as negative
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ones. Each person is involved in one positive and one randomly chosen negative
pair. Pairs are classified as positive if the corresponding distance is lower than a
threshold chosen as the median distance between elements of pairs in the test set.
The rate of correctly classified pairs corresponds to the Equal Error Rate (EER)
of the corresponding ROC curve, and is therefore reported as the accuracy at
equal error rate.

The overall process is repeated 10 times with different sets of random splits
and negative pairs and the mean and standard deviation are reported.

CUFSF. CHUK Face Sketch FERET (CUFSF) [5] includes 1194 persons from
the FERET database [26]. For each person, a sketch has been drawn by an
artist, with the intention of making part of their appearance more noticeable
than it really is. Because some images of the original FERET database have
been removed from the now available (extended) version of FERET, only 860
photo/sketch pairs are nowadays available. As for the experiments on Multi PIE,
we extracted LTP descriptors on aligned and cropped images, using the anno-
tation provided with the database. The final descriptors are 9440 dimensional
vectors for both modalities.

The algorithms are trained using a subset of 500 randomly chosen persons,
the remaining 360 persons being used for testing.

The experiments were made following exactly the same protocols as for Multi
PIE, and the performance given by the nearest neighbor accuracy and the accu-
racy at equal error rate (see previous section).

LFW. Despite Labeled Faces in the Wild (LFW) [7] is not intrinsically mul-
timodal, it has been extensively used in the past, giving the opportunity to
compare the results with existing works. LFW contains more than 13,000 im-
ages of faces collected from the web. 1680 of the pictured people are represented
in two or more photographs. The database is made of 10 sets of 300 positive
pairs and 300 negative pairs. People cannot be represented in more than one set.
The performances are reported as the average classification accuracy of a 10-fold
cross validation.

We have introduced cross-modality by representing each face of a face pair
with a different type of descriptor. On one hand, we use the descriptors used
in the previous experiments, i.e. LTP computed on the aligned version of the
database [27]. On the other hand, we also represent face image with the face de-
scriptors used by [28] (downloaded from author’s web page). They are SIFT [29]
features extracted on 9 face key-points (eye corners, nose corners, nose tip and
mouth corners) at 3 different scales.

The dimensionality of the two descriptors is respectively 14160 and 3456.
All the experiments done on LFW uses pairs of these very different descriptors,
supposed to represent two different modalities that cannot be compared directly.

As we use the restricted setting of LFW [7], labels are given only for pairs
and we don’t know the identity of the persons involved. Therefore, the nearest
neighbor accuracy would not make sense and we report only the accuracy at
equal error rate (see Section 4.1), following LFW’s protocol.
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Fig.4. CMML’s average accuracies on Multi PIE, for different ratios n~ of nega-
tive/positive training pairs and for different dimensionalities of the latent space.
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Fig. 5. Multi PIE : average accuracies of CMML, CCA, PLS and CDFE, with n™ = 1.

Implementation details. Since all the descriptors used in our experiments are
histograms, we use the x2-RBF kernel to compare them:

2 _ (w; — yi)2
Di:(z,y) = zz: ity (13)
K(z,y) =e Py (14)

We have observed that « 2 gives good results on average and used it for
all the presented experiments. Furthermore, for making the comparisons of the
different method possible, all of them have been used in their kernel version with
the x2-RBF kernel.

For CMML the smoothness parameter 5 was set to 3 for all the experiments
(in practice we have observed that this value does not affect the performance
a lot, explaining why we have used the same value for all the experiments).
For CCA and CDFE the regularization parameters are cross-validated for each
experiment, ensuring to give optimal results.

4.2 Results

Results on Multi PIE. We first evaluate the performance of our method
(CMML) for different number of negative training pairs and for different sizes
of the latent space. As explained before, we use two different measures of per-
formance: (a) Nearest neighbor accuracy and (b) accuracy at Equal Error Rate
(EER) (see Section 4.1). Fig. 4 shows the performance of CMML, using all pairs
of possible poses, for different sizes of the latent space and for different ratios of
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Method Gallery|,; 4119 0/09.008-0{08_1{13-0[14-0[05-0]04_1[19_1|19_0|20_0|01_0[ 240
CMML 0.75]0.82(0.80]0.05|0.85]0.04|1.00|1.00]0.99]0.82|0.92]0.89|0.76|0.64
CCA 0.28]0.31]0.30]0.52|0.26|0.43|0.53]0.05 |0.94]0.46 |0.47]0.38|0.73|0.28
PLS 0.50]0.72|0.80]0.93|0.69|0.93|1.00|1.00|0.99]0.60|0.88]0.76|0.67|0.50
CDFE 0.14]0.28(0.26]0.35|0.15|0.43|0.58|0.51 |0.31]0.14|0.33]0.21|0.15|0.18

Table 1. Nearest neighbor accuracy for pairs made of one “05_1” image (frontal view)
and images with different poses (one different pose per column), for CMML, CCA and
PLS,. The dimensionality of the latent space is 30 and n~ = 1. See Fig. 3 camera
labels.

negative/positive training pairs ratio. n~ = k means there are k times more neg-
ative pairs than positive pairs in the training set. n~ = 1 gives the best result.
Performance decreases when this ratio increases, and the drop seems even more
important for high-dimensional latent spaces. This is probably because of two
factors: i) when n~ increases, too much weight is given to negative constraints
with respect to positive ones and ii) over-fitting.

Note that in these experiments, negative pairs were generated randomly. We
also tried to generate them using heuristics like considering for each person the
closest negative match, but this approach tends decrease the performances, most
probably because it enforces over-fitting.

We then compare CMML with its competitors (CCA, PLS and CDFE). Fig.
5 shows the performance of the different methods, averaged over all pairs of pos-
sible poses, as a function of the dimensionality of the latent space (for n= = 1).
For low dimensional latent spaces, CMML and PLS clearly outperform CCA and
CDFE, with a clear advantage for CMML, which remains consistently higher
than PLS. The performance of CMML and PLS are quite stable with respect
to the dimensionality while CCA and CDFE performs better when the dimen-
sionality gets higher. CDFE performs consistently worse than all other methods,
while CCA outperforms CMML when the number of dimensionality is larger
than about one hundred.

Tab. 1 reports the nearest neighbor accuracy for pairs made of i) one front
view (given by camera “5.01”) and ii) another image coming from another cam-
era view. Each column reports the accuracy for the corresponding camera view.
Therefore, the first column gives the accuracy for pairs made of “5.01” and
“11.0” images. Views are sorted from left to right accordingly with their spa-
tial organization, as illustrated by Fig. 3. Consequently, profile views (cameras
“11.0” and “24.0”) lie at the right and left-hand sides. Please, note that for
these experiments, the size of the latent space is 30. As expected, the matching
is easier for near-frontal views (cameras “14.0” and “5.0”) for which CMML
and PLS give perfect matching. As we can see by looking at Table 1, CMML
outperforms all other methods.

Results on CUFSF. Similar experiments have been done on CUFSF. Fig. 6
shows that CMML outperforms all other methods by a large margin. As for
Multi PIE the performances are quite steady with the dimensionality of the
latent space. While the accuracy of the nearest neighbor increases to saturate
around 70 dimensions, the accuracy at equal error rates remains roughly the same



12 Alexis Mignon and Frédéric Jurie

Nearest neighbor accuracy Accuracy at equal error rate

1.00; —
0.8 0.95 ﬁ""‘"---& ------- . __ﬁ
07 B ‘ H K otk S |
gost v . 5 ¢
G o5 e © 085 =
g oa L. ; Ka ¥ cmmL S 0.0 k3 ¥ cmmL
< o3t X S k-4 CCcA < o7 & k-4 CcA
0.2 s : Y-k pLs | ¥-% pLs
o1 é-é CDFE o701 ¢ éé CDFE
00 20 40 60 80 100 120 140 160 0655 20 20 60 80 100 120 140 160
dimensionality of the latent space dimensionality of the latent space

Fig. 6. CUFSF: nearest neighbor ccuracy (left) and equal error rate accuracy (right)
for CMML (n~ = 1), CCA, PLS and CDFE.
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Fig. 7. CUFSF: nearest neighbor accuracy (left) and accuracy at equal error rate (right)
using CMML for different ratios of negative/positive pairs n™.

for the range of dimensionality studied. PLS follows similar trends as CMML
but with an important gap in favor of CMML. In contrast with the results on
Multi PIE, the performance of CCA on CUFSF, after a slight increase up to
30 dimensions, decreases for higher dimensions. CDFE follows the same trends
as on Multi PIE, the performances consistently increase to saturate at higher
dimensionality, reaching performance similar to CCA.

The behavior of CMML with the number of negative constraints on CUFSF
(Fig. 7) is similar to the one observed on Multi PIE. The best results are obtained
for one negative pair per positive pair, and the drop of performance with higher
number of negative pairs tends to increase with the dimensionality of the latent
space.

Results on LEW. In contrast with Multi PIE and CUFSF where the faces are
taken in strictly controlled conditions of pose, lighting and expressions, LFW
faces were captured “in the wild”, exhibiting a wide range of variations. On
this database, PLS, CCA and CDFE achieve poor performances. Performance
of CDFE remains steady with the dimensionality of the latent space, but the
accuracy is only slightly better than chance (roughly between 55 and 60% ).
PLS’s accuracy is around 63% for 20 to 40-d latent space. CCA’s performance
steadily increases with the number of dimensions but at 150 dimensions its ac-
curacy remains under 70%. In contrast, CMML reaches maximal accuracy with
about 70 dimensions and then remains quite stable around 80%.
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Fig. 8. Accuracy on LFW at equal error rate for CMML (n~ = 1), CCA, PLS and
CDFE.

5 Conclusion

This paper addresses the problem of Cross Modal Matching by introducing
CMML, a new metric learning method that learns discriminatively a low di-
mensional latent space in which object represented in different modalities can
be directly compared. Experiments on three different databases for cross-modal
face recognition showed that CMML is able to discover relevant low dimensional
structures while remaining robust to over-fitting when the dimensionality of the
latent space increases. Overall, CMML consistently outperforms other popular
methods such as CCA, PLS and CDFE.
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