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Abstract
This paper introduces Pairwise Constrained Component

Analysis (PCCA), a new algorithm for learning distance
metrics from sparse pairwise similarity/dissimilarity con-
straints in high dimensional input space, problem for which
most existing distance metric learning approaches are not
adapted. PCCA learns a projection into a low-dimensional
space where the distance between pairs of data points re-
spects the desired constraints, exhibiting good generaliza-
tion properties in presence of high dimensional data. The
paper also shows how to efficiently kernelize the approach.
PCCA is experimentally validated on two challenging vi-
sion tasks, face verification and person re-identification, for
which we obtain state-of-the-art results.

1. Introduction
Several computer vision problems rely heavily on the

use of distance functions learned from image pairs. Among
them, face verification and person re-identification are two
important tasks. While face verification [16, 23] is of de-
ciding whether two face images (e.g. Fig. 1) represent the
same person or not, person re-identification [9, 15] is that of
matching images of persons taken across non-overlapping
camera views (e.g. Fig. 1).

Two key ingredients of approaches addressing these
tasks are (i) the descriptors (or signatures) used to repre-
sent images and (ii) the distance function used to compare
the signatures. In the present paper, we focus on the latter.

Given the many uncontrolled sources of variations, e.g.
changes in illumination, human pose and camera proper-
ties, it is unlikely that any standard distance function, e.g.
Euclidean distance, will be adequate for the task even with
very relevant image signatures. Hence, many works have
successfully addressed the problem by learning task specific
distance functions [14, 33].

Distance metric learning is a well studied topic. Many
widely used learning algorithms, like unsupervised clus-
tering (e.g. k-means), Nearest Neighbors and kernel-based
classifiers, require a metric over the data input space. Such
a metric is not only supposed to reflect the intrinsic prop-
erties of the data but also to be adapted to the specific

Figure 1. Sample positive pairs for the LFW dataset [16] (left) and
the VIPeR dataset [12] (right).

application domain. Therefore, many approaches have
tried to learn the distance using domain specific constraints
[1, 10, 11, 14, 19, 21, 27, 30, 31, 33].

Although all metric learning methods rely roughly on the
intuitive idea that similar data points should be closer than
dissimilar points, most of them are not adapted to the tasks
we are interested in. Either they assume the training data
to be fully annotated (i.e. class labels must be given) [10,
11, 19, 27, 30], or they are too domain specific [1, 5, 33],
or they suffer from significant loss in performance when
the dimensionality of the input space is high or when the
amount of available training data is low [7, 14].

In the present paper, we propose a new metric learning
algorithm applicable when only a sparse set of pairwise sim-
ilarity constraints on high-dimensional data points are given
for training. In other words we are interested in problems
where similarity information is available only for a lim-
ited number of pairs of points. We build a low-dimensional
space in which the training constraints are respected by min-
imizing a loss function penalizing distances greater than a
threshold for positive pairs and lower than the same thresh-
old for negative pairs. Thus, our method is of loss mini-
mization with regularization (by fixing the dimension of the
projection space). Experimental validations on challeng-
ing datasets for face verification e.g. Labeled Faces in the
Wild (LFW) [16] and person re-identification e.g. VIPeR
[12] validate our approach.



2. Related work
Distance metric learning plays a significant role in pat-

tern recognition and therefore has received a lot of attention.
The literature in distance learning can be split into two main
categories: manifold learning, for which the key idea is to
learn an underlying low-dimensional manifold preserving
the distance between observed data points (ISOMAP [26]
or Multidimensional Scaling [6] are two good representa-
tives of this category), and supervised or semi-supervised
approaches that try to learn metrics by keeping points of
the same class close while separating points from different
classes. This paper focuses on the latter.

Following the early work of Xing et al. [31], most dis-
tance metrics learning approaches learn a Mahalanobis-like
distance: D2

M (x,y) = (x − y)TM(x − y) where M is a
positive semi-definite (PSD) matrix satisfying the training
constraints. The main advantage is that the optimization of
the Mahalanobis matrix can be seen as a constrained con-
vex programming problem which can be solved with exist-
ing efficient algorithms. Furthermore, [20] shows that this
framework can be extended to non-linear problems using
the kernel trick.

However, guaranteeing M is PSD can be computation-
ally expensive. Hence, several works such as [11, 27, 33]
factorize M as M = LTL, ensuring the PSD constraint
and implicitly defining a (potentially low-dimensional) pro-
jection into an Euclidean space which reflects the distance
constraints. Our work belongs to this line.

Besides these general approaches, several methods
specifically address k-Nearest Neighbors (k-NN) classifi-
cation. They either introduce constraints on absolute dis-
tances between pairs e.g. Neighborhood Component analy-
sis (NCA) [11] and Maximally Collapsing Classes method
(MCC) [10], or constraints on relative distances such as the
Large Margin Nearest Neighbors [30] or its variants i.e.
Large Margin Component Analysis (LMCA) [27], invari-
ant LMNN [19] and LMNN-R [8]. With these approaches,
the k-nearest neighborhood of each point is explicitly in-
spected and the distance metric is learned in a way that for
each training point, the neighbors from others classes are
always farther than the neighbors from the same class up
to a margin. As pointed out in the introduction, these ap-
proaches require the class labels of all the training points,
and are thus not adapted to problems for which only pair-
wise constraints are available.

In contrast, On-line Algorithm for Scalable Image Simi-
larity (OASIS) [5] and Probabilistic Relative Distance Com-
parison (PRDC) [33] are specifically designed to work with
pairwise constraints. However, they make strong assump-
tions about input data or about the structure of the con-
straints, making them inapplicable in general (OASIS re-
quires sparse vectors as input data, and, as PRDC, can be
used only if each class is represented by at least one pair of

similar and one pair of dissimilar points). For tasks such as
face recognition with the Labeled Faces in the Wild dataset
[16], none of these requirements are satisfied.

Interestingly, the recently proposed Information Theo-
retic Metric Learning (ITML) [7] and Logistic Discriminant
Metric Learning (LDML) [14] are designed to deal with
general pairwise constraints. However, they exhibit poor
generalization capability when trained with few training
data [14, 33]. Furthermore, ITML uses a Kullback-Leibler
divergence criterion and a specific optimization scheme [18]
to maintain PSD and low-rank properties, and optimizes the
full rank matrix (such as LDML). The computational cost
as well as the number of parameters to learn increases with
the square of the dimensionality of the input space, which
makes them impractical for the tasks we address (at least
without prior dimensionality reduction) and prone to over-
fitting. While LDML does not guarantee M to be PSD and
does not use any regularization term, its robust probabilis-
tic model based on the logistic function has been shown to
perform better than ITML (see [14] for comparisons).

Although our method can be used in the general pair-
wise constraints case, in contrast with ITML and LDML it
can cope with high dimensional data and exhibits good gen-
eralization properties even with few training data.

Finally, coming back to the tasks we are interested in (i.e.
face verification and person re-identification), the most ef-
ficient approaches rely on the above-mentioned approaches
for distance learning. ITML and LDML are successfully
used for face verification in [14, 25] while LMNN-R and
PRDC are used for person re-identification in [8, 33] out-
performing previous approaches such as RankSVM [24] or
the boosting based approach of [13].

3. Pairwise Constrained Component Analysis
This section presents our contribution, the Pairwise Con-

strained Component Analysis (PCCA).
Without loss of generality, we assume the training data

consists of a set of N d−dimensional points (e.g. visual
descriptors), denoted as XN×d, and a small set of c con-
straints between points ofX , denoted C = {(ik, jk, yk)|k =
1, . . . , c}. ik, jk ∈ {1 . . . N}2 are the indices of the two
points of the constraint k, and yk ∈ {−1, 1} indicates
whether the points belong to the same class or not. While
defining the constraints this way is appropriate for sparse
pairwise constraints (c ∼ O(N)), it can also be used for
clustering tasks by having one constraint per pair of train-
ing data (c ∼ O(N2)).

3.1. Problem formulation

We look for the linear transformation L that maps data
points into a low-dimensional space of dimension d′ � d
in which the Euclidean distance satisfies the pairwise (train-
ing) constraints C. This mapping transforms x (original in-
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Figure 2. Loss function for pos. (solid) and neg. (dashed) pairs.

put space) into x′ = Lx. The square of our distance is then
given by

D2
L(x,y) = ‖L(x− y)‖22 (1)

Learning the distance means computing L such that, for
a given threshold t, distances between similar points are
smaller than t while those between dissimilar points are
greater than t. As t fixes the scale of distances in the low-
dimensional space, it can be set to t = 1.

Finding the optimal value of L can be done by minimiz-
ing the following objective function:

min
L
E(L) =

c∑
n=1

`β
(
yn(D2

L(xin ,xjn)− 1)
)

(2)

where `β(x) = 1
β log(1 + eβx) is the generalized logistic

loss function [32]. The objective function thus penalizes the
pairs which do not match the required constraints. Our loss
function, `β(x), is a smooth approximation of the hinge loss
h(x) = max(0, x) to which it converges asymptotically as
the sharpness parameter β increases i.e. limβ→∞ `β(x) =
h(x) (see Fig. 2).

Although, the optimization problem in Eq. (2) is not con-
vex with respect to L, since `β(x) is convex, it is convex
with respect to M = LTL. Consequently, solving the non-
convex problem Eq. (2) with respect toL by an iterative gra-
dient descent scheme is guaranteed to converge to a global
minimum [17, 2].

Our algorithm has two additional parameters: (i) the di-
mensionality of the output space d′ and (ii) the sharpness
parameter β. Note that the function `β(x) is always above
the hinge loss h(x) = `∞(x). Thus optimizing on β si-
multaneously with L, can trivially lower the value of the
objective function without improving L. Hence, β is fixed
during the optimization, and we estimate β and d′ by cross
validation.

The problem in Eq. (2) is thus solved using a gradient-
descent scheme with line search. The gradient of the objec-
tive function E(L) is given as:

∂E

∂L
= 2

c∑
n=1

ynσβ(yn(1−D2
L(xin ,xjn)))LCn (3)

where σβ(x) = (1 + e−βx)−1, which corresponds to the
usual logistic function for β = 1 , and Cn = (xin −
xjn)(xin − xjn)T .

Compared to ITML [7] and LDML [14] our formula-
tion presents several advantages. First, the linear mapping
to a low-dimensional space is equivalent to imposing a low
rank constraint on the Mahalanobis matrix. This helps us in
avoiding a regularization term like in ITML and, thus, keep-
ing the number of parameters (to learn) of O(d) instead of
O(d2) (ITML and LDML). In practice, it allows us to work
directly with high-dimensional input data, while ITML and
LDML must be preceded by a step of dimensionality re-
duction resulting in loss of information. Finally, as pointed
out in section 2, the benefits of LDML are mostly due to its
robust probabilistic model. In the following, we show that
PCCA implicitly defines a robust probabilistic model also.

3.2. Probabilistic interpretation

The loss function `β(x) can be rewritten as `β(x) =
− 1
β log(σβ(−x)). If the probability pn that the n-th pair

is correctly labeled is given by

pn = σβ(yi(1−D2
L(xin ,xjn))) (4)

then e−βE(L) =
∏c
n=1 pn can be interpreted as the likeli-

hood that all pairs are correctly labeled. Solving the prob-
lem given Eq. (2) is thus equivalent to finding the maximum
likelihood estimate of L.

3.3. Kernel PCCA

Distance metric learning methods can suffer, when the
given data has non linearities, due to the linear form of the
Mahalanobis distance. To partially alleviate this limitation,
several authors [28, 11, 27, 7] have used the “kernel trick”
to map the data vectors into an higher dimensional space
without having to explicitly compute the mapping. Only
the value of their inner products (precomputed and stored
in the kernel matrix) is required.

Following this line, we propose to re-parametrize L by
L = AXT , which is equivalent to consider that each row of
L is a linear combination of elements of X . Then we have

D2
L(xi,xj) = ‖AXT (xi − xj)‖22

D2
L(xi,xj) = ‖A(ki − kj)‖22

D2
L(xi,xj) = D2

A(ki,kj)
(5)

where kl = XTxl is the l-th column of the kernel matrix
K = XTX . An interesting property of this formulation
is that the linear and the kernel form of the distance have
similar equations. However, learning A the same way as
L (i.e. using the kernel matrix K instead of X) has bad
convergence properties (see Fig. 3). This has been noticed
by several authors who instead solve the dual problem [28,
10]. In contrast, we show that the problem can be handled



directly in the primal by using a descent direction equivalent
to the gradient of the linear case.

The adaptation rule of the gradient descent in the linear
case is:

Lt+1 = Lt − 2ηLt

c∑
n=1

LtnCn (6)

where Lt is the value of the matrix L at iteration t, η the
learning rate and Ltn = ynσ(βyn(1−D2

Lt
(xin ,xjn))). By

writing Lt = AtX
T and multiplying all terms on the right

by X we get:

At+1X
TX = AtX

TX − 2ηAt
∑c
n=1 LtnXTCnX

At+1K = AtK − 2ηAt
∑c
n=1 LtnΓn (7)

with:

Γn = XT (xin − xjn)(xin − xjn)TX

Γn = (kin − kjn)(kin − kjn)T (8)

We then multiply both sides of equation (7) on the right by
K−1:

At+1 = At − 2ηAt
∑c
n=1 LtnΓnK

−1 (9)
At+1 = At − 2ηAt

∑c
n=1 LtnKJn (10)

where Jn = (ein − ejn)(ein − ejn)T and el is the l-th
vector of the canonical basis, namely the vector with the
l-th element equal to 1 and every other to 0.

We can notice that the adaptation rule in Eq. (9) is identi-
cal to the original formula in Eq. (6) except that the gradient
is right multiplied by K−1. Matrix K−1 acts as a precon-
ditioner for the gradient descent. The same issue has been
observed when solving the Support Vector Machine (SVM)
problem in the primal [4].

Along with faster (theoretical) convergence, another
benefit of this preconditioner is that only two columns of
the preconditioned gradient matrix have to be modified at
each iteration for each pair (see Eq. (10)) instead of the full
matrix, which dramatically speeds up the computation of
the gradient. Fig. 3 shows typical evolution of the objec-
tive function as a function of the number of iterations, with
and without preconditioning. Notice the log-log scales on
the axes. While the preconditioned version of the algorithm
takes aggressive descending steps, the raw version tends to
wander in plateau regions which makes convergence with-
out preconditioning roughly 10 times slower.

4. Experiments
We validate the proposed approach on two different

vision tasks, namely face verification and person re-
identification, for which having a good metric is crucial. We
use two publicly available challenging datasets. In the fol-
lowing, we first present the datasets and their benchmarking
protocols and then present our results.

Figure 3. Convergence speed of the PCCA algorithm with and
without preconditioning, on the VIPeR dataset using RBF χ2 ker-
nel. See Section 4 for details.

Datasets. For face verification, we use the popular La-
beled Faces in the Wild (LFW) dataset [16]. It contains
more than 13,000 images of faces collected from the web.
1680 of the pictured people have two or more distinct pho-
tos. The database in split in two views. View 1, which is
given for development purposes (training, validation, model
selection, etc.) has 2200 pairs of faces (half positives, half
negatives) and a test set of 1000 pairs. View 2 is for
benchmarking only. It consists of 10 folds of 600 pairs each
used for cross validation. The average classification score
and standard deviation over the 10-folds is reported. We
address here the image-restricted setting, where the name
of the persons are not explicitly given in the training set.
Therefore, only the information about whether a pair of im-
ages is matched or mismatched is known.

Our experiments on person re-identification use the
Viewpoint Invariant Pedestrian Recognition (VIPeR)
database [12]. It contains 632 pedestrian image pairs (1264
images) and is the largest publicly available dataset for per-
son re-identification. Images are taken from arbitrary view-
points and different illumination conditions. Each image is
scaled to 128x48 pixels and is encoded in RGB. For eval-
uation purposes, the dataset is split into train and test sets
by randomly selecting p persons out of the 632 for the test
set, the remaining persons being in the train set. Since there
are two images per person, we use them in the train set to
provide one positive pair for each person while n− negative
pairs for each person are built by randomly selecting one
image of the person and one image of another person. The
test set is split into a gallery and a probe set by randomly
putting – for each person of the test set – one of the two
images to the probe set and the other to the gallery. The
process is repeated 10 times and the results are reported as
the mean/std values over the 10 folds. Performances are
evaluated with the Cumulative Match Characteristic (CMC,
see [12] for details), which can be seen as the recall at r.
CMC score at rank r = 1 thus corresponds to the recogni-
tion rate. Computing the CMC for r > 1 (e.g. r = 5) is also
important since in real use cases the first retrieved images
can be visually inspected by an operator.



Number of training pairs
Metric 600 10,000
ITML-sqrt [14] 76.2 ± 0.5 80.5 ± 0.5
LDML-sqrt [14] 77.5 ± 0.5 83.2 ± 0.4
PCCA-sqrt 82.2 ± 0.4 83.3± 0.5
PCCA-χ2 83.1 ± 0.5 84.3 ± 0.5
PCCA-χ2

RBF 83.8 ± 0.4 85.0 ± 0.4

Table 1. Accuracy on LFW with 600 and 10,000 training pairs per
fold. See text for details.

Image representations. For comparison, all our experi-
ments on LFW use the SIFT descriptors computed by [14],
available on their website. For experiments on VIPeR we
use descriptors similar to those proposed by [33] i.e. 16
bins color histograms in 3 color spaces (RGB, HSV and
YCrCb) as well as texture histograms based on Local Bi-
nary Patterns (LBP) computed on 6 non overlapping hori-
zontal strips. All the histograms are independently normal-
ized to unit L1 norm and concatenated into a single vector.
Explicit Feature Maps and Kernelization. Our image
representations for both databases are histograms, so the
experiments were all performed using metrics adapted to
histograms.

The experiments with linear approaches were performed
using element-wise square-rooted histograms and are thus
indicated by a -sqrt suffix. As shown by [29], this is equiv-
alent to mapping the original histograms into the feature
space corresponding to the Bhattacharyya kernel, improv-
ing the performance.

Kernel PCCA uses the χ2 kernel: Kχ2(x,y) =∑d
i=1

2xiyi
xi+yi

for which the corresponding metric distance is:

D2
χ2(x,y) =

∑d
i=1

(xi−yi)2
xi+yi

. The generalized radial basis

function (RBF) kernel [29] is KRBF
χ2 (x,y) = e

−D2
χ2 (x,y),

generalizing the Gaussian kernel for non-euclidean spaces.
The experiments based on the χ2 and the RBF χ2 ker-

nels are respectively indicated by the use of -χ2 and -χ2
RBF

suffices.

4.1. Experiments on face verification

In this section, we use LFW to evaluate the performance
of PCCA for different kernels. We also evaluate the impact
of the number of training pairs available and compare the
performance with state-of-the-art approaches.

Table 1 presents our results and gives comparisons with
LDML and ITML (using same SIFT descriptors) with 600
and 10,000 training pairs, for different kernels. Note that
for PCCA we fixed d′ = 40 and β = 3 for all the following
experiments (including those on VIPeR). These values have
been observed to give good average results on validation
data (View 1).

The first column gives the performance for 600 train-
ing pairs per fold, where our method obtains 83.8 ± 0.4,
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Figure 4. Recognition accuracy of PCCA-χ2
RBF as a function of

the number of training pairs for training. Results for LDML [14]
with 600 and 10000 pairs are also reported with horizontal lines.

which is significantly better than the 77.5 ± 0.5% obtained
by LDML [14]. ITML gives consistently lower results than
both PCCA and LDML.

As said before, LFW has 600 pairs in each of the 10
folds of View 2. This is the “official” unrestricted setting
for benchmarking with LFW. However, to evaluate the im-
pact of the number of training pairs, we have used different
configurations with more and less than 600 training pairs
per folds. For producing more than 600 pairs, we had to
use the identity of the people depicted in each set to ran-
domly create new pairs. It means we are in this case in the
unrestricted setting of LFW.

With 10,000 pairs per set, LDML and linear PCCA give
comparable results, i.e. 83.2 ± 0.4% and 83.3 ± 0.5% re-
spectively. Using the χ2 kernel with PCCA gives a mean
accuracy of 84.3± 0.5% and the best performances are ob-
tained with the RBF χ2 kernel ( 85.0 ± 0.4%) which again
significantly out-performs LDML.

Fig. 4 shows the performance of PCCA as a function of
the number of training pairs per fold, using the RBF χ2 ker-
nel. The scores for LDML are presented for comparison
purposes as reported in [14]. The scores increases quickly
for small numbers of training pairs (note the log scale on
the horizontal axis) and then keep increasing slowly up to
10,000 pairs, indicating that only a small set of constraint
is required to reach optimal scores. With 80 training pairs
we already have equivalent performance to LDML with 600
pairs. Our method outperforms LDML with a large margin,
especially with small number of training pairs. Note that a
strong dimensionality reduction (PCA) must be applied to
the input data before using LDML, while PCCA can use the
data in their original space.

Furthermore, our results compare remarkably well with
other state-of-the-art results on LFW, knowing we use only
9 SIFT descriptors (at 3 scales) for representing faces. The
much more elaborate and face-specific LE descriptor [3]
gives only 83.4± 0.6% in the restricted paradigm. [22] re-
ports 85.6± 0.5% using very densely sampled local binary
patterns combined with a learned cosine similarity measure.



p = 316 r = 1 r = 5 r = 10 r = 20

PRDC n− = 1 [33] 15.66 38.42 53.86 70.09
MCC n− = 631 [33] 15.19 41.77 57.59 73.39
ITML n− = 631 [33] 11.61 31.39 45.76 63.86
PCCA-sqrt n− = 1 13.48 34.84 49.43 67.18
PCCA-χ2 n− = 1 13.67 35.22 49.93 68.20
PCCA-χ2

RBF n
− = 1 17.02 43.26 58.67 76.36

PCCA-sqrt n− = 10 17.28 42.41 56.68 74.53
PCCA-χ2 n− = 10 17.28 43.64 59.68 76.04
PCCA-χ2

RBF n
− = 10 19.27 48.89 64.91 80.28

p = 532 r = 1 r = 5 r = 10 r = 20

PRDC n− = 1 [33] 9.12 24.19 34.40 48.55
MCC n− = 199 [33] 5.00 16.32 25.92 39.64
ITML n− = 199 [33] 4.19 11.11 17.22 24.59
PCCA-sqrt n− = 1 7.34 21.02 31.30 45.37
PCCA-χ2 n− = 1 7.03 20.32 30.86 45.71
PCCA-χ2

RBFn
− = 1 7.61 22.42 33.40 48.42

PCCA-sqrt n− = 10 8.44 24.34 35.62 50.07
PCCA-χ2 n− = 10 7.95 24.23 35.73 50.45
PCCA-χ2

RBFn
− = 10 9.27 24.89 37.43 52.89

Table 2. Cumulative Match Characteristic on VIPeR with p = 316 and p = 532 persons in the test set, for the to r retrieved images. See
text for details.

Figure 5. VIPeR dataset: CMC as the function of r, for PCCA and 2 state of the art approaches.

4.2. Experiments on person re-identification

Our experiments on the VIPeR database follow the pro-
tocol given in [12]. Table 2 presents our results as well as
those obtained by two state-of-the-art approaches, namely
PRDC [33] and MCC [10]. Results for ITML, again lower
than others, are given for comparison purposes only. For
PRDC and MCC, we reproduce the figures given in [33].
The left-hand part of the table reports CMC scores obtained
with p = 316 persons in the test set (the 316 remaining
ones being in the train set), for different kernels and differ-
ent ratio n− of negative/positive pairs in the train set. The
right-hand part of the table is for p = 532 person in the test
set (100 being left for the train set).

As expected, the performance of PCCA tends to increase
with the complexity of the kernel (e.g. +4% for r = 1 and
p = 316 with χ2

RBF) and, to a smaller extent, with the num-
ber of negative pairs used in the train set (e.g. +1% for 9
additional negative pairs, for r = 1 and p = 316, with the
χ2 kernel).

PCCA always outperforms MCC, even with n− = 1,
both for p = 316 and p = 532, when using the RBF χ2

kernel. With n− = 10 negative pairs, PCCA outperforms

Figure 6. CMC of PPCA as a function of the number of negative
pairs used for training. Computed on VIPer at rank r = 20, for
p = 316 and p = 532.

both PRDC and MCC.

Please note that even if PRDC uses only sparse training
data (for each person only two pairs are required), PRDC
imposes that each person in the training set is involved in at
least one positive pair and one negative pair. It is therefore
not possible to set n− = 10 despite negative examples can
be very easily generated. PCCA, for n− = 1, uses equiva-
lently sparse training data while not imposing any constraint
on the pairs, which is much more flexible and allows the use
of more negative pairs.

[8] has recently proposed LMNN-R , inspired from
LMNN [19] with an additional rejection mechanism. As
the paper reports only curves and no tables, quantitative
comparison is more difficult. In Fig. 5, we have reproduced
their results and give CMC scores obtained by LMNN-R [8]
for ranks up to 100 with p = 316. We also report the
scores for PCCA (with RBF χ2 and n− = 10), PRDC [33]
and MCC [10]. PCCA gives similar or slightly better than
LMNN-R while requiring much less training data. Indeed,
please note that LMNN-R, as MCC, requires to have the
identity of each person of the training set while PCCA uses
only pairs with same/different annotation.

Finally, Fig. 6 reports CMC of PCCA as a function of the
number of negative pairs used for training, both for p = 316
and p = 532 (r = 20). The error bars represent standard er-
ror on the mean value over the 10 folds. The scores quickly
increase to reach a maximum around n− = 7 and then satu-
rates for p = 316 while dropping after k = 10 for p = 532.
From this figure we see that only a very small amount of
training data is enough to learn the metrics.



5. Conclusions
We have presented a new method to learn a low-

dimensional mapping in which distances between data
points complies with a set of sparse training pairwise con-
straints.

Unlike existing methods, PCCA does not require ad-
ditional assumptions on the structure of the data or the
constraints and can handle natively high dimensional input
spaces.

Experiments performed on the Labeled Faces in the Wild
and the Viewpoint Independent Person Re-identification
datasets proved that PCCA exhibits excellent generalization
properties even in the case of sparse high dimensional data
and that it performs better than clustering methods requiring
the full annotation of the training set. State-of-the-art per-
formances are achieved thanks to the strong regularization
induced by the low dimensional projection and the robust
underlain probabilistic model.
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