

Image re-ranking based on statistics of frequent patterns

Winn Voravuthikunchai, Bruno Crémilleux and <u>Frédéric Jurie</u> Université de Caen Basse-Normandie, France CNRS UMR 6072 – ENSICAEN <u>firstname.name@unicaen.fr</u>

ACM International Conference on Multimedia Retrieval

Large scale image search

e.g. 10,000,000 images

- Free text-based queries (easy to formulate)
- Text: fast indexing structures (inverted files)

Support the 2014 Great Backyard P & Cou February 5, 2014 by Editor The 17th annual Great Backyard P Count (GBBC) is set through to February sin methode locations all over the wo watchers of all ag vevels of experience to count the fifteen-minute period and participant of the one fifteen-minute... [Rea-STags: backy d, bird courtebirders, birding, migration, research, Filed under Feature

<title> Birds com: Onlin Birds Guide with Ficts, Articles Wideos, and Photos</title> <meta name="description" content **Bird**s and **Bird**ing guide showcasing informatio apout species, ornithology **bird** atching activities, care, eduction, photos and original articles about birds." />

- Use image content (more accurate)
- Free queries: precomputing image classifiers can not be done offline
- Reranking: get images based on text, rerank them based on image content ... but online computations!

Initial set of images

Bird

Bass guitar

Car

Large scale image search

Bird

Bass guitar

Car

Initial set of images

Bird

Bass guitar

Car

Key Assumption Relevant images

Visual constancy (at least within groups)

Online mining of visually similar structures

Image	Relevancy	Rank
	yes	1
	yes	2
	no	3
	yes	4
	no	5

 I_5

 $\{a_4, a_5, a_8\}$

no

Image I_i	Trans. t_i	rel.
I_1	$\{a_1, a_2, a_3\}$	yes
I_2	$\{a_1, a_4, a_6\}$	yes
I_3	$\{a_1, a_7, a_9\}$	no
I_4	$\{a_2, a_3, a_6\}$	yes
I_5	$\{a_4, a_5, a_8\}$	no

- Pattern (or Itemset) X = {a₁, ..., a_k}: a set of items, subsequences, substructures, etc.
- Frequency / support: # of occurrences $\mathcal{F}(a_2, a_3) = 2$
- *Frequent* pattern: a pattern that occurs frequently in a data set (min freq)
- An itemset X is closed if there exists no super-pattern Y, Y > X with the same support as X
- Closed pattern is a lossless compression of freq. patterns

Initial ranking

Image I_i	Trans. t_i	rel.
I_1	$\{a_1, a_2, a_3\}$	yes
I_2	$\{a_1,a_4,a_6\}$	yes
I_3	$\{a_1, a_7, a_9\}$	no
I_4	$\{a_2, a_3, a_6\}$	yes
I_5	$\{a_4,a_5,a_8\}$	no

Frequent closed patterns

$$\mathcal{F} \ge 2$$

Image I_i	Trans. t_i	rel.
I_1	$\{a_1, a_2, a_3\}$	yes
I_2	$\{a_1, a_4, a_6\}$	yes
I_3	$\{a_1, a_7, a_9\}$	no
I_4	$\{a_2, a_3, a_6\}$	yes
I_5	$\{a_4, a_5, a_8\}$	no

$$\begin{array}{c} Patterns \ \mathcal{X}_{j} \\ \mathcal{X}_{1} = \{a_{1}\} \\ \mathcal{X}_{2} = \{a_{4}\} \\ \mathcal{X}_{3} = \{a_{6}\} \\ \mathcal{X}_{4} = \{a_{2}, a_{3}\} \end{array}$$

Frequent closed patterns

 $\mathcal{F} \ge 2$

Image I_i	Trans. t_i	rel.
I_1	$\{a_1, a_2, a_3\}$	yes
I_2	$\{a_1,a_4,a_6\}$	yes
I_3	$\{a_1, a_7, a_9\}$	no
I_4	$\{a_2, a_3, a_6\}$	yes
I_5	$\{a_4,a_5,a_8\}$	no

Initial ranking

Frequent closed patterns $\mathcal{F} \geq 2$

Image I _i	$\mathcal{X}_j \text{ in } t_i$	$\#\mathcal{X}_j \text{ in } t_i$	rel.
I_2	$\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$	3	yes
I_1	$\mathcal{X}_1,\mathcal{X}_4$	2	yes
I_4	$\mathcal{X}_3,\mathcal{X}_4$	2	yes
I_3	\mathcal{X}_1	1	no
I_5	\mathcal{X}_2	1	no

Re-ranking

An even better scoring function!

- Previous score do not use textual information
- Textual information is embedded into the original ranking
- Weight frequent itemsets (sum of the inverse of the original rank of images containing them)

$$w(\mathcal{X}) = \sum_{k \in K_{\mathcal{T}}(\mathcal{X})} \frac{1}{k}$$

Image I_i	Trans. t_i	rel.)	Example
I_1	$\{a_1, a_2, a_3\}$	yes		121111111111111
I_2	$\{a_1, a_4, a_6\}$	yes		$\mathcal{X}_4 = (a_2, a_3)$
I_3	$\{a_1, a_7, a_9\}$	no		(\mathbf{r}) 1 1
I_4	$\{a_2, a_3, a_6\}$	yes		$w(\mathcal{X}_4) = \frac{1}{1} + \frac{1}{4}$
I_{5}	$\{a_4, a_5, a_8\}$	no		_

An even better scoring function

$$S(I_i) = \sum_{\mathcal{X} \in \{\mathcal{F}(\mathcal{T}, F_{min}) \subseteq t_i\}} w(\mathcal{X})$$

With

$$w(\mathcal{X}) = \sum_{k \in K_{\mathcal{T}}(\mathcal{X})} \frac{1}{k}$$

In practice, mining complexity is linear with the number of images (but grows exponentially with the number of items)

Items are binary elements. How to produce them from images?

Binarization of bag-of-words representations

Images are represented as histograms of visual words

(b) Top-K bins binarization.

Mupliple random projections + adaptative thresholding

V	Vis. words distrib.					After proj. R1			Transactions	
Α	В	С	D	E	F	A	С	E	F	Transactions
.2	.3	.2	.0	.1	.2	.2	.2	.1	.2	$\{A,C,F\}$
.0	.3	.4	.1	.1	.1	0.	.4	.1	.1	$\{C, E, F\}$
.3	.3	.0	.2	.1	.1	.3	.0	.1	.1	$\{A, E, F\}$
.2	.2	.0	.3	.1	.2	.2	.0	.1	.2	$\{A, E, F\}$
.0	.3	.1	.1	.4	.1	0.	.1	.4	.1	$\{C, E, F\}$
.1	.3	.0	.2	.1	.3	.1	.0	.1	.3	$\{A, E, F\}$

Experimental validation

Experimental validation

- LCM library / minfreq=2
- BOW: VLfeat library
- Visual words are pooled from a 3-level spatial pyramid (1x1,2x2, 4x4)
- 3 different datasets

INRIA Web Queries dataset

- 71,478 images / 353 queries / about 200 images per query
- +/- 40% of the images are relevant to the query
- Diverse queries: general object classes ('car', 'bird', 'mountain', etc.) + specific names of objects, places, events, or persons ('Nike Logo', 'Eiffel tower', 'Cannes festival', 'Cameron Diaz',etc.)
- Annotations giving the relevance to each query is provided.
- The evaluation protocol: Average Precision AP is calculated per each query and the mean Average Precision mAP is reported.

QUAERO's visual concepts image dataset

- More image (950 images/query)
- More querie (519 queries)

Animal - Ant

Scene - Elffer Tower

Event -Traffic Jam

Object - Watch

eBay Motorbike dataset

- 5,245 images of different types of motorbikes collected from eBay
- Outliers removal (97% of relevant images)

Parameters

- **K**: number of items given by the adaptive thresholding (K=20)
- **P**: number of projections (P=20)
- **p**: dimensionality of the projected space (p=800)

Parameters

- K: number of items given by the adaptive thresholding (K=20)
- P: number of projections (P=500)
- p: dimensionality of the projected space (p=800)

		2	And and months in sec.
Vocab. size	100	1,000	2,000
mAP	62.9	65.7	66.4
			Construction of the second

Complexity and computational time

Query	Pat. E	$\operatorname{xtract}(\mathbf{s})$	Scori	ing(s)	#Pat.	
	Tr.	Rp.	Tr.	Rp.	Tr.	Rp.
Maradona	0.18	0.10	0.01	0.03	2k	7k
Giraffe	0.30	0.10	0.02	0.04	4k	8k
Times square	0.49	0.14	0.03	0.07	7k	14k
Grand canyon	0.81	0.12	0.05	0.06	10k	11k
Logo Chelsea	3.53	0.13	0.40	0.06	42k	11k
Map World	8.62	0.13	1.03	0.07	100k	12k
Mean 30 queries	1.58	0.11	0.17	0.04	17k	9k
Std. 30 queries	6	0.02	0.02	0.02	30k	3k

Alternate mining procedure. Explained in the paper but not in this presentation (less efficient in general)

Method	mAP(%)
Original Search Engine	56.9
Query-ind.+Query-dep. [24]	65.5
LogReg (visual) [15]	64.9
SpecFilter+MRank [17]	73.8
Ours	72.2

INRIA Web Queries dataset

Method	mAP(%)
Original ranking	70.4
Query-ind.+Query-dep. [24]	72.7
Ours	76.1

QUAERO's visual concepts image dataset

Method	EER(%)
Implicit Shape Model [6]	71.0
FP+SVM [18]	72.6
Ours	80.0

eBay Motorbike dataset

Eiffel tower

Conclusions

- New approach for image re-ranking relying on the effective use of pattern mining techniques.
- Efficient scoring function relying on the hypothesis that non-relevant images are more scattered than relevant ones
- Updates the original scores by measuring the amount of frequent patterns contained in the images.
- How to produce binary items from real valued histograms
- Experimentally validated: in addition of being fast enough for on the fly usage, the approach gives state-of-the-art results on three different challenging datasets.

Eiffel tower

