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Abstract This paper addresses the problem of accurately
segmenting instances of object classes in images without
any human interaction. Our model combines a bag-of-words
recognition component with spatial regularization based on
a random field and a Dirichlet process mixture. Bag-of-
words models successfully predict the presence of an ob-
ject within an image; however, they can not accurately lo-
cate object boundaries. Random Fields take into account the
spatial layout of images and provide local spatial regulariza-
tion. Yet, as they use local coupling between image labels,
they fail to capture larger scale structures needed for object
recognition. These components are combined with a Dirich-
let process mixture. It models images as a composition of
regions, each representing a single object instance. Gibbs
sampling is used for parameter estimations and object seg-
mentation.

Our model successfully segments object category in-
stances, despite cluttered backgrounds and large variations
in appearance and viewpoints. The strengths and limitations
of our model are shown through extensive experimental
evaluations. First, we evaluate the result of two methods to
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build visual vocabularies. Second, we show how to combine
strong labeling (segmented images) with weak labeling (im-
ages annotated with bounding boxes), in order to limit the la-
beling effort needed to learn the model. Third, we study the
effect of different initializations. We present results on four
image databases, including the challenging PASCAL VOC
2007 data set on which we obtain state-of-the art results.

Keywords Object recognition · Segmentation · Random
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1 Introduction

After several decades of research, image segmentation still
remains an open problem. Many different approaches have
been investigated, combining various image properties such
as color, texture, edges, motion, etc. Initially, these meth-
ods worked in an unsupervised way: without exploiting a
database of manually segmented images to automatically
learn parameters for optimal performance. Also, many of
the methods operate in a ‘bottom-up’ way, generating the
image segmentation by a process of aggregating local image
information, and usually failing to capture high level image
information. However, image segmentation is deeply related
to image understanding, requiring long-range dependencies
to resolve ambiguities that arise at a small scale.

The problem we address in this paper is that of accurately
segmenting instances of object classes in images, without
giving any prior information on object identities, orienta-
tions, positions and scales. This is also known as ‘figure-
ground segmentation’. Note that this differs from ‘image
segmentation’ or ‘scene segmentation’, which correspond to
the situation where everything in the image has to be seg-
mented. In object segmentation only several objects of in-
terest have to be segmented.
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Fig. 1 Examples of object category segmentation obtained by our method without user interaction. Input images (columns 1 and 4), object
category masks (columns 2 and 5) and object category segmentation (columns 3 and 6)

We assume that the objects belong to known categories,
and these categories are defined by sets of training im-
ages which are used to learn object appearance models.
These training images play a fundamental role because ob-
ject models built from these images allow object recogni-
tion, which we couple with the segmentation process. In
particular, we are interested in segmenting object categories
that demonstrate large intra-class appearance variations. In
Fig. 1 we show several typical images with corresponding
segmentation masks produced by our method. Starting from
cluttered images including objects of interest, the method is
able to recognize and localize objects, and to automatically
produce segmentation masks that can be used to extract ob-
jects without manual effort. The major contribution of our
approach is an instance-based modeling of the scene. More
precisely, the object recognition is enhanced by a mecha-
nism which allows to distinguish and model the different
instances belonging to a particular class. The number of in-
stances is automatically estimated and controls the number
of regions produced by our segmentation.

The model presented in this paper combines three com-
plementary components: (a) a random field (RF) component
which ensures short-range spatial contiguity of the segmen-
tation by aligning segment boundaries with low-level im-
age boundaries, (b) a Dirichlet process component that en-
sures mid-range spatial contiguity by modeling the image
as a composition of blobs, each of which corresponds to
a single object, and (c) a bag-of-words object recognition
component which allows strong intra-class appearance and
imaging variations. Although the combination of RFs with
a recognition component based on visual words has been
explored before, the main contribution of the model pre-
sented in this paper is the addition of a Dirichlet process to
achieve higher quality segmentation and instance-level seg-
mentation. This paper extends (Larlus and Jurie 2008) with
additional experiments and an evaluation of vocabulary con-
struction methods.

In the remainder we first review related work in Sect. 2.
Then, in Sect. 3 we present our model and the estimation

of its parameters. Visual vocabulary construction for bag-
of-words methods based on decision trees is described in
Sect. 4. We present our experimental results in Sect. 5, and
conclude with a discussion in Sect. 6.

2 Discussion of Related Work

Segmentation can be seen as a ‘chicken-egg’ problem,
where object detection and recognition is required for accu-
rate segmentation, and vice versa. We will first discuss gen-
erative bag-of-words object recognition methods, and then
turn to methods which are primarily designed for segmenta-
tion.

Bag-of-words methods have proven to be very effective
for the recognition of object classes. The ‘visual words’
in the image representations are obtained by quantization
of low-level image descriptors. The quantization can be
computed in different ways. Often, visual vocabularies are
produced by standard unsupervised clustering techniques
(Csurka et al. 2004; Jurie and Triggs 2005; Leibe and
Schiele 2003). In our model, the visual vocabulary is used to
discriminate between classes at the level of patches. Meth-
ods have been designed to produce more discriminative vo-
cabularies when labels are available at the image or at the
patch level (Larlus and Jurie 2006; Moosmann et al. 2008).
Among such techniques, the ones based on trees are of par-
ticular interest because of their efficiency and the fact that
they directly pursue class-discriminative quantization using
patch labels. In Sect. 4 we describe quantization using de-
cision trees in detail, and we compare such quantization to
those obtained by k-means in our experiments.

Topic models, such as probabilistic Latent Semantic
Analysis (pLSA) and Latent Dirichlet Allocation (LDA)
(Blei et al. 2003; Hofmann 2001), have recently been intro-
duced as an alternative over the simple Naive Bayes model
for bag-of-words image representations. Topic models con-
sider the bag-of-words as a mixture of several ‘topics’ which
can be thought of scene elements in images, e.g. the visual
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words in an image of a beach scene are modeled as a mix-
ture of words belonging to sea, sky, people, trees, etc. Each
image has its own distribution over topics, and each topic is
represented as a distribution over visual words. Several au-
thors have extended the standard topic models from the text
analysis community to include modeling of some spatial as-
pects of the image (Cao and Fei-Fei 2007; Fergus et al. 2005;
Sudderth et al. 2008). Such models are not only useful for
image classification, where the images of each class are
modeled using a generative topic model over the images
of that class, but are also useful for object localization. The
main limitation of these methods is that they either use a
very rigid and coarse model of the object shape, are overly
flexible without any shape prior, or use an initial over seg-
mentation of the image and assign each segment as a whole
to a topic which breaks if the initial segmentation contains
errors. In all cases, a precise object segmentation is not ob-
tained in general.

Various forms of Random Fields (RFs) have been pro-
posed for image segmentation (Geman and Geman 1984;
Kumar and Hebert 2006; Lafferty et al. 2001; Shotton et al.
2006; Verbeek and Triggs 2008). They define a probability
distribution over the labels of sites (pixels or image patches)
which encodes correlations between neighboring sites. RFs
incorporate evidence terms acting on individual sites; e.g.
the visual word associated with a patch will increase the
likelihood of the patch having a certain label. Ambiguities
that arise when considering the local evidence for patches in
isolation can be resolved by propagating evidence for labels
spatially over the image.

Some models combine topic models and RFs (Orbanz
and Buhmann 2006; Verbeek and Triggs 2007). However,
these models do not include a component to ensure mid-
range spatial contiguity of the segmentation: they only use
the local regularization of the RF and the topic model that
enforces a regularization at an image-wide scale. Compared
to a standard topic model such models generate a crisper
segmentation, while compared to a standard RF small re-
gions with a label that does not appear elsewhere in the im-
age are suppressed. In contrast, our model tries to capture
object instances using blobs, which will result in mid-range
regularization. In a similar spirit, in (Storkey and Williams
2003) a tree structure is learned dynamically to locate the
position of the objects in an image, and the relative loca-
tion of their parts. The modeling of object parts can improve
the ability to differentiate instances, but the model does not
include a fine random field type spatial regularization.

A number of approaches combining local regularization
using RFs with more geometric object category models
have been proposed (Borenstein and Malik 2006; Kumar et
al. 2005; Leibe and Schiele 2003; Levin and Weiss 2006;
Winn and Jojic 2005; Winn and Shotton 2006). These ap-
proaches model the shape of objects and their deformations,

sometimes also taking occlusions and viewpoint changes ex-
plicitly into account. Although they are robust to small local
shape variations, the strong geometric constraints embedded
into the models are not suitable to model the complex ap-
pearances of weakly structured object classes. Examples of
these complex appearances can be found in Fig. 4, for the
classes cats and people. Such classes require more flexible
models.

Finally, we mention work on interactive segmentation
tools (Boykov and Jolly 2001; Li et al. 2004; Rother et al.
2004) where a user roughly indicates the object of interest
using a bounding box or using a brush tool. Models of the
foreground and background are estimated, and these mod-
els are used in combination with a RF to spatially propagate
the user-provided labels. After label propagation the models
are re-estimated and the procedure is repeated. Using such
an interactive approach, remarkably accurate segmentation
results can be obtained. The next step is to reduce the user
interaction to only specifying the object category, e.g. a user
could ask to segment all cats in an image.

3 The Proposed Segmentation Model

In our model we represent images as a collection of over-
lapping square patches Pi , i ∈ {1, . . . , n} of a fixed size ex-
tracted on the nodes of a regular grid. We suppose the im-
age patches are generated by a number of objects and a
background; we use simple Gaussian and uniform models
for their spatial extent, and refer to both objects and back-
ground as ‘blobs’. In each image both the number of blobs
and their position, size, and shape are unknown. We asso-
ciate a blob label with each patch, and define a Random
Field (RF) structured energy function over them to encode
the short-range correlations among them. Through the cate-
gory labels of blobs, we also associate category labels with
the patches. Once object model parameters have been es-
timated from labeled training images, we can use a Gibbs
sampler to estimate the category labels of patches in a new
unlabeled image.

Below, we first describe our feature extraction procedure
in Sect. 3.1, then we continue in Sect. 3.2 with the Dirichlet
process mixture model over the features, and then come to
the RF component of the model in Sect. 3.3. We describe the
Gibbs sampler for parameter estimation in Sect. 3.4. Finally,
in Sect. 3.5 we discuss how we map the category labels ob-
tained at the patch level to a smooth segmentation on the
pixel level.

3.1 Visual Feature Extraction

For image patch i the feature set Pi contains
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Fig. 2 Example image from the Graz database and its boundary map

1. The SIFT descriptor (Lowe 2004), coded by the visual
word w

sift
i ,

2. The hue descriptor (van de Weijer and Schmid 2006),
coded by the color word wcolor

i ,
3. The average RGB value in the patch center, denoted rgbi ,
4. The image coordinates of the patch center Xi = (xi, yi).

In Sect. 4, we will discuss the quantization of the SIFT and
hue descriptor in detail which allows to compute w

sift
i and

wcolor
i for all patches.
In addition we extract a boundary map G that gives for

each pixel an estimate of the probability of being part of
a boundary between image segments. The map is based
on characteristic changes in several local cues associated
with natural boundaries, see Fig. 2 for an example. Many
methods exist to extract natural boundaries, striking differ-
ent balances between accuracy and computational complex-
ity. Here, our choice was purely based on accuracy, and we
used one of the current state-of-the-art methods (Martin et
al. 2004).

3.2 A Dirichlet Process Over Patch Characteristics

In this section we present a generative model for rough ob-
ject/background segmentation. We use a model inspired by
(Sudderth et al. 2008) with explicit spatial structure informa-
tion: we consider that an image is made of regions that we
call ‘blobs’. Each blob generates the features of the patches
associated with that blob, where the distribution over fea-
tures depends on the parameters associated with the blob.
Intuitively, if an image contains three objects, say a car,
a pedestrian and a bike, we may have four blobs: one corre-
sponding to each object, plus an additional blob for the back-
ground. Given the blobs and their parameters, the patches
in an image are assumed to be independent. The genera-
tive process for a patch is as follows: (i) sample a blob, and
(ii) sample the features using the distribution of the blob.
The remainder of this section details this generative process.

The Dirichlet process (DP) (Neal 1998) can be seen as the
limit for K → ∞ of a finite K-component mixture model.
The mixing weights of the components are controlled by a
‘concentration parameter’ α > 0; smaller values implement
a prior to use fewer mixture components. Note that even for

a mixture with an infinite number of components, only a fi-
nite number of mixture components can be associated with a
finite sample. In our case the blobs will take the role of mix-
ture components. This means that a newly sampled patch
can be either sampled from one of the blobs that have been
used before, with probability Nk/(n − 1 + α) where Nk is
the number of samples associated with blob k, and n is the
number of samples including the current one. Alternatively,
the patch can be sampled from a new blob with a probabil-
ity α/(n − 1 + α). DPs exhibit a so-called clustering prop-
erty: the more often a given value has been sampled in the
past, the more likely it is to be sampled again. The cluster-
ing property is desirable as it will reduces the likelihood to
assign patches to classes that are rare in the image: if a patch
observation leaves ambiguity on the corresponding category
the most frequent class throughout the image is preferred.
Below, we use pDir to denote the probability of the patch-
to-blob assignment.

With each blob Bk we associate a set of parameters
�k = {μk,�k,Ck, lk}. The density over the spatial positions
Xi of associated patches is given by a Gaussian distribution
p(Xi |�k) = N (Xi;μk,�k). The category associated with
the blob is denoted lk , and Ck denotes the parameters of a
mixture of Gaussian (MoG) model over the color vectors
rgbi of the associated patches. The background is defined
by a color distribution Cbg and its spatial model is defined
as uniform over the image area.

In addition to the features Pi = {wsift
i ,wcolor

i , rgbi ,Xi}
we associate two random variables, bi and ci , with each
patch. The index of the blob that generated the patch is de-
noted by bi , and ci denotes the generating component in the
corresponding MoG over RGB values.

Given the index of the blob that generated a patch Pi the
features are assumed to be independent, and we have

p(Pi |bi = k) = p(w
sift
i |�k)p(wcolor

i |�k)

× p(rgbi |�k)p(Xi |�k). (1)

The color models, as in (Rother et al. 2004), capture
color distributions of specific object instances and the back-
ground. This helps us to achieve coherent object instance
level segmentation, even if locally recognition is ambigu-
ous. Note that this color model plays a different role than the
model over the color words wcolor

i , which model category-
level color information and have some degree of invariance
to lighting conditions.

The probability of visual words associated with color and
SIFT descriptors are modeled by multinomials associated
with the category of the blob, i.e. p(w

sift
i |�k) = p(w

sift
i |lk)

and p(wcolor
i |�k) = p(wcolor

i |lk). These distributions en-
code category-level appearance information, and form the
recognition component of our model. The category models
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Fig. 3 The model captures
spatial regularity by (i) a
contrast sensitive pairwise
potential, and (ii) the Gaussian
and uniform spatial models
associated with the object blobs
and background, left panel. The
right panel shows the graphical
representation of the model

are the only source of information which is shared across im-
ages, and they are learned from annotated training images.
The maximum likelihood estimates of these distributions are
found by simply normalizing the counts of how often visual
words appear in each class and in the background, for all
training images.

3.3 A Random Field Over Patch-to-Blob Assignments

Given the categories associated with the blobs, the patch-to-
blob assignment b = {b1, . . . , bn} determines the segmenta-
tion of an image. To enforce local spatial contiguity in the
above model we add an RF prior over blob assignments. By
using the image boundary map to define the RF potentials,
label changes will be aligned with low-level image bound-
aries. The RF is defined over the rectangular grid of patches
using an 8-neighbor connectivity.

Above we defined a model over the patch-to-blob as-
signments and patch features p(P , b|�) = p(b)p(P |b,�),
where p(b) was modeled using a Dirichlet process prior. We
include the RF in the model p(b) by defining our new model
as the product of a RF model and the Dirichlet process:

p(P , b|�) ∝ pDir(b)pRF(b|�)p(P |b,�). (2)

To simplify the formulation of the RF, we drop � from the
notation, and rewrite the joint probability as p(P , b|�) ∝
exp(−E(P , b)) and define the energy function as

E(P , b) = U(P , b) + γ
∑

i,j∈C
Vi,j (bi, bj ), (3)

where C represents the set of neighbors (or cliques) in the
eight-connected patch grid, γ is a parameter that balances
the two terms, and U encompasses the Dirichlet process:

U(P , b) = − log(p(P |b,�)pDir(b)). (4)

The second term in (3) represents pRF , and its pair-wise po-
tentials are defined as

Vi,j (bi, bj ) = [lbi
�= lbj

] exp(−β�i,j ), (5)

where [.] is the indicator function. This potential enforces
local coherence of the patch labels bi , and encourages la-
bel changes to be located with high values in the bound-
ary map G , similar to the approach in (Rother et al. 2004;

Shotton et al. 2006; Verbeek and Triggs 2008). The max-
imum value in the boundary map between the centers of
patches Pi and Pj is denoted �i,j , and β is the inverse of the
average of the �i,j over the image. Thus, Vi,j = 0 for neigh-
boring patches that are assigned to the same blob, otherwise
a penalty is incurred that decreases when the probability of
having a boundary between the patches increases, according
to G . See Fig. 3 for an illustration.

We note that the definition of (2) may seem problem-
atic due to the fact that pDir distributes over an infinite
state space, whereas pRF will be defined over a finite state
space. However, in practice we can clip pDir to assign zero
probability to using more blobs than image patches, and re-
normalizing the distribution over the remaining configura-
tions. Since we will use a Gibbs sampler for inference we
do not actually need to include the normalization term, and
we omitted the clipping term for pDir in (2).

3.4 Approximate Inference Using Gibbs Sampling

In this section we consider how to use the model to infer
the patch-to-blob assignment b for an image, together with
the blob-to-category assignments lk . Exact inference in our
model is intractable, and we thus have to resort to approxi-
mate inference techniques. We have chosen to use a Gibbs
sampler, motivated by its conceptual and practical simplic-
ity, and not aiming to use the most efficient possible tech-
nique for approximate inference in our model. The Gibbs
sampler samples in turn the blob parameters �k , and the
patch level variables bi and ci .

Given a fixed patch-to-blob assignment b, the blob para-
meters �k = {μk,�k,Ck, lk} are distributed independently.
We assume uninformative priors over �k , and we use the
shorthand Bk = {i : bi = k} to compactly write the posteri-
ors over the parameters. For the parameters governing the
spatial extent of the blob, μk and �k , we find:

μk ∼ N
(

Mean{Xi : i ∈ Bk}, 1

Nk

Cov{Xi : i ∈ Bk}
)

, (6)

�k ∼ W (Cov{Xi : i ∈ Bk},Nk − 1), (7)

where we use N to denote a normal distribution and W
to denote a Wishart distribution. The parameters Ck of the
blob-specific color MoG are estimated using stochastic EM,
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using samples rather than expectations in the E-step. Finally,
the multinomial from which we sample the category labels
lk are given by:

p(lk|b) ∝
∏

i∈Bk

p(w
sift
i |lk)p(wcolor

i |lk). (8)

Given the patch-to-blob assignments, the ci variables that
denote the component of the color MoG used for each patch,
are straightforwardly sampled from the posterior over mix-
ture components in the corresponding MoG.

The patch-to-blob assignments bi are sampled sequen-
tially, given the blob parameters �k and all other patch-to-
blob assignments b−i = b \ {bi}. We distinguish two cases:
sampling an assignment to a blob also assigned to other
patches, and assigning the patch to a new blob:

p(bi |b−i ,�, P )

∝
⎧
⎨

⎩
p(Pi |bi)

Nbi

n−1+α
exp(−γ

∑
i,j∈C Vi,j ) existing blob,

p(Pi |bi)
α

n−1+α
exp(−γ

∑
i,j∈C Vi,j ) new blob.

(9)

To calculate (9) for a new blob, we sample parameters for
the blob as follows. The category label lk is sampled uni-
formly among the available categories, the blob center μk

is sampled uniformly over the image area, and �k is taken
isotropic with standard deviation corresponding to half the
smallest side of the image. The parameters of the color
MoG, Ck , are set to the mean and covariance of all pixels
in the image.

3.5 Towards a Pixel-Level Segmentation

The model presented above works at the patch level, but our
goal is to produce a precise pixel level segmentation. By
using overlapping patches we can ensure precision of the
segmentation using a simple post-processing method. The
Gibbs sampler gives us estimates of the posterior probabili-
ties of the blob assignment of each patch, and a probability
of the category label of each blob. From those, we can es-
timate the class label probability for a patch by summing
the blob-class probabilities, weighted by the probability that
the patch belongs to each blob. The probability for a pixel
to belong to a category or to the background is computed
by accumulating the probabilities of all patches containing
this pixel. We do this with a weighted sum of the patch-level
probabilities, where the weights depend on the distance be-
tween the pixel and the center of a patch. A crisp segmen-
tation mask can then be obtained by assigning each pixel to
the most probable class.

4 Decision Trees as Discriminant Vocabularies

Our segmentation model relies on a visual vocabulary to
represent image patches. It has recently been shown (Moos-
mann et al. 2008) in the context of image categorization,
that decision trees are an efficient alternative to clustering
for vocabulary construction, leading to more discriminative
vocabularies. Motivated by this success, we consider them
here in the context of segmentation. Decision trees have
been used by others as a quantization method for segmen-
tation (Shotton et al. 2008), but a direct comparison to using
clustering was not presented.

Note that the reason for quantizing the descriptor space is
to facilitate the modeling of highly multi-modal class con-
ditional distributions in the form of multinomials over a dis-
crete vocabulary. The usual manner to create visual vocab-
ularies, using simple clustering algorithms like k-means, is
computationally expensive; both to create the visual vocab-
ulary, and to assign descriptors to words. Furthermore, there
is no guarantee that a vocabulary obtained by clustering is
good at discriminating the appearance of object classes.

Decision trees are binary trees with a test embedded in
each non-leaf node. They are constructed for optimal pre-
diction of an output, here category label, given an input, the
patch descriptor here. As in (Moosmann et al. 2008), we use
binary tests that compare one of the descriptor components
with a threshold. Depending on the result of this test, the
patch descends to the left or right child node. Note that deci-
sion trees partition the descriptor space, just like clustering
methods.

Using multiple randomly constructed decision trees con-
currently is important for two reasons (Breiman et al. 1984;
Geurts et al. 2006). First, the optimal decision trees have a
high variance as a function of the training data, i.e. maxi-
mum likelihood estimation is not robust. Second, for most
practical problems it is intractable to find the best decision
trees for a given training set. In practice, very good results
are obtained by randomly constructing near-optimal trees
and averaging over their predictions, similar to Bayesian
model averaging. The randomized construction starts at the
root node, and adds nodes one-by-one, for each node the best
among several randomly generated candidate splits is used.
The ensemble of multiple trees is often referred to as a ‘for-
est’. The forest is characterized by (i) the number of trees,
(ii) the number of leaves in the trees, and (iii) the number
of candidate splits used during construction. We study the
effect of these parameters in our experiments.

Recall that in our original model we used two visual vo-
cabularies, one for the SIFT descriptors and one for the color
descriptors. When using a forest of decision trees for mul-
tiple descriptors we proceed in a similar way: each patch
having as many visual words as we have trees. Recall that
each patch Pi is represented using a RGB value rgbi , and its
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Fig. 4 Example images from PASCAL VOC 2006 for categories cat (top) and people (bottom)

2d image coordinate Xi , and multiple visual words which
we now denote w

j
i , j ∈ {1, . . . , J }. Equation (1) which gives

the probability of the patch characteristics given the blob as-
signment now becomes

p(Pi |bi = k) = p(rgbi |�k)p(Xi |�k)

J∏

j=1

p(w
j
i |�k). (10)

The Gibbs sampler of blob parameters changes only for lk ,
which are now sampled from

p(lk|b) ∝
∏

i∈Bk

J∏

j=1

p(w
j
i |lk). (11)

This formulation with multiple vocabularies can be used for
any type of vocabulary (clustering or tree based).

5 Experimental Results

In this section we present our experimental results. First we
describe the data sets in Sect. 5.1. Then, in Sect. 5.2, we
study the influence of the features used in our model, and
show that all contribute to the final segmentation. We also
compare vocabulary construction methods, and demonstrate
the effectiveness of tree-based vocabularies.

In Sect. 5.3 we present qualitative segmentation results;
quantitative results follow in Sect. 5.4. First, we assess per-
formance in comparison to the state-of-the-art results, and
obtain comparable results. Then we show how we success-
fully combine a small set of annotated images with a larger
set of weakly labeled images. We also study the influence of
the initialization of our algorithm, and show that this has a
big impact on results.

Finally, in Sect. 5.5 we consider how the modeling of in-
dividual instances of an object class can help the segmenta-
tion at the category level. We show images where it helps as
well as typical failures; in particular we present cases where
the number of modeled instances does not correspond to the
real number of instances in the image.

5.1 Object Category Data Sets

In our experiments, we consider four challenging data sets
for object segmentation: the TU Graz-02 data set, the PAS-
CAL VOC 2006 and 2007 data sets, and the MSRC data
set.1 All four contain large intra-class appearance varia-
tions including scale, illumination, and viewpoint changes,
as well as occlusions and complex backgrounds. In Fig. 4
we illustrate two categories of the PASCAL VOC 2006 data
set.

The TU Graz-02 set contains images of the categories bi-
cycle, car, and person. The availability of ground-truth seg-
mentation masks makes this database interesting for quanti-
tative evaluation of segmentation methods, and for paramet-
ric studies. This set is composed of 404 bicycle images, 420
car images, 311 images with people, and 380 background
images. There are 300 images of each object class with a
precise ground truth segmentation mask, and we only con-
sider this subset in our experiments.

The PASCAL VOC 2006 data set contains examples
of ten categories: bicycles, buses, cats, cars, cows, dogs,
horses, motorbikes, people, and sheep. The data set is com-
posed of 5304 images which are divided in 1277 images for
training, 1341 images for validation, and 2686 images for
testing. As segmentation masks are not available for these
images, they only interest us for qualitative experiments.

The PASCAL VOC 2007 data set contains ten categories
in addition to those of PASCAL VOC 2006: birds, boats,
bottles, chairs, planes, potted plants, sofa, tables, trains, and
monitors. The data set contains 2501 training images, 2510
validation images, and 4952 test images. Within the train-
ing and validation sets, for a subset of 422 images, object
instances are segmented at pixel level, in the other images
object instances are marked by bounding boxes.

1These data sets are publicly available at the following URLs
http://www.emt.tugraz.at/~pinz/data,
http://www.pascal-network.org/challenges/VOC,
http://research.microsoft.com/vision/cambridge/recognition.

http://www.emt.tugraz.at/~pinz/data
http://www.pascal-network.org/challenges/VOC
http://research.microsoft.com/vision/cambridge/recognition
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We also present results on the MSRC data set, which con-
sists of 591 images which are manually segmented in 21
categories. Each image typically contains two to five cat-
egories, but the manual segmentation does not distinguish
different object instances. Furthermore, several non-object
categories are included, such as sky, grass, and road.

For all data sets the same settings have been used to ex-
tract patches. Between 2000 and 4000 patches of 25 × 25
pixels are extracted per image, and the 5 × 5 pixel center is
used to compute the RGB patch value.

5.2 Evaluation of Features and Vocabulary Construction

Here we evaluate different feature sets and vocabulary con-
struction methods for our method using the TU-Graz02 data
set. Images in this set contain only one object category, so
the segmentation task can be seen as a binary classification
problem. Thus the accuracy can be measured by precision-
recall curves that show how many pixels from the object cat-
egory (all images of a class merged) are correctly classified.
For each class, we use half of the 300 images to learn the
model, while the second half is used for testing.

We found that the effect of low-level features is indepen-
dent of the vocabulary construction method. Therefore, we
evaluate them only for k-means vocabularies.

5.2.1 Effect of Different Feature Sets

For each patch we compute a SIFT descriptor, a hue descrip-
tor, the average RGB values, and the 2d image coordinates.
Here we evaluate the relative importance of these features
for the segmentation result. We compare the full model, de-
noted wsift + wcolor + rgb + X, which is the one using all
the features, with different models using only a subset of
these features. We used the random field (RF) component of
our model in experiments that use the spatial image coordi-
nates X, in other experiments we did not. Visual vocabular-
ies of 5000 words are created for the SIFT descriptors, and
of 100 words for the hue descriptors. They are obtained by
clustering the descriptors of training images with k-means.

The results of this parametric study are reported in Fig. 5.
We observe that the two visual vocabularies wsift, wcolor

are essential. If one of them is missing the performance de-
creases significantly, however the SIFT descriptor is more
critical than the hue descriptor. These results show that we
need indeed strong category level recognition cues to guide
the segmentation process. Spatial regularization using the
RF and the blob model improves the results considerably, as
the comparison of the red (all features) and magenta (with-
out spatial information) curves shows.

The rgb color feature, used at the instance level, gives an
improvement for two categories out of three. When an ob-
ject is correctly localized, we observed that this color com-
ponent improves considerably the segmentation accuracy. In

this case, non class-discriminative patches can be assigned
to object or background depending on their color, as shown
in Fig. 6. In the same figure, we also illustrate the role of the
different components of our model by showing the segmen-
tation of an image obtained using (a) a simple patch classi-
fier (each visual word predicts its category), (b) the Dirichlet
process mixture model, and (c) the full model including the
RF.

5.2.2 Comparison Between k-Means and Trees

Next, we compare the quality of the segmentation when us-
ing k-means vocabularies and ones obtained using decision
trees. For simplicity, we consider here only the SIFT de-
scriptor to code the category level information. To achieve a
fair comparison with the forest, we ran several times the k-
means algorithm and combined statistics obtained by these
multiple-vocabularies in the same way trees are combined.
The left part of Fig. 7 shows the comparison of the two vo-
cabulary types for the bike category of the Graz data set, for
combination of 5 vocabularies. The models include in both
cases: SIFT descriptors converted into visual words, RGB
components and patch positions. Each k-means vocabulary
has 5000 visual words, while the tree based vocabulary has
5000 leaves per tree (for these experiments we tried 50 tests
per node). The results show that for this setting, tree-based
vocabularies outperform those obtained using k-means clus-
tering. The right part of Fig. 7 shows that varying the num-
ber of k-means clusterings considered does not significantly
change the segmentation results.

The random trees approach is relying on different para-
meters. It is therefore interesting to evaluate their influence
on the segmentation results. First, the number of leaves per
tree is an important parameter. The results in the left panel
of Fig. 8 show that the average precision improves when
increasing the number of leaves, at least up to 5000, while
keeping the number of trees fixed to 3. The right part of the
same figure shows the influence of the number of trees (for
5000 leaves); having more trees slightly improves the aver-
age precision, but the results are less dependent on the num-
ber of trees than on the number of leaves, which is coherent
with previous findings (Moosmann et al. 2008).

Another key parameter is the number of split conditions
evaluated for choosing the best split for each node. This pa-
rameter controls the amount of randomness while also hav-
ing an impact on the time needed to build the trees. The left
panel of Fig. 9 shows precision-recall curves obtained for
different values of this parameter, between one (fully ran-
dom tree) and 100 trials per node, while keeping the number
of trees fixed to 3. The improvement is significant from fully
random to 10 tests per nodes; larger values (above 100) do
not lead to significant improvements in accuracy. The time
needed to build the trees increases with the number of trials.
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Fig. 5 Performance using different feature subsets from: SIFT vocabulary (wsift), color vocabulary (wcolor), color components (rgb) and spatial
coordinates (X). The MRF component is used in experiments when the image coordinates X are used

Fig. 6 Left: our model, with (a)
and without (b) the instance
specific RGB color model.
Right: image, boundary map,
and segmentation produced
using (a) simple patch based
classifier (wSIFT + whue),
(b) the Dirichlet process mixture
model, and (c) the full model

The right panel of Fig. 9 shows the corresponding process-
ing times. Note that the training time, even with 100 trials,
is much lower than running k-means once. The gain in effi-
ciency is also visible during the test stage, where patch de-
scriptors have to be assign to visual words: assigning a de-
scriptor to a k-means word takes 1030 µs, while assigning
this descriptor to a leaf takes 4.53 µs. In the first case one
Euclidean distance per visual word has to be computed in a
high dimensional space, while in the second case we only
compare a few descriptor dimensions to thresholds. Nev-
ertheless, converting patch descriptors into visual words is
only a small part of the total processing time; computing the
features takes about 30 seconds for a dense extraction of an
image (3000 descriptors), and parameter estimation with the
Gibbs sampler takes about 1 minute.

5.3 Qualitative Results

In this section, we discuss some segmentation masks com-
puted on Graz02, MSRC and PASCAL VOC 2006 data-
bases, presented Fig. 10. For each class, images are seg-
mented into objects of interest and background regions. For
the Graz and MSRC data sets, the object model is trained us-
ing the available segmentation masks. In the PASCAL 2006

data set, object category models are trained from bounding
box annotations only. It should be noted that this data set is
used in a binary classification framework, object vs back-
ground, which reduces the complexity of the task. Accurate
segmentation are produced despite the very strong appear-
ance variations of these categories. We will see in Sect. 5.4
that on the PASCAL 2007 data set, the 20 object classes
competing at the same time makes the problem much harder.

More segmentation results are shown in Fig. 1 and
Fig. 13. Our algorithm automatically detects and segments
objects accurately despite large intra-class appearance vari-
ations, even with weak supervision (training with bounding
boxes only). Even in a multi-class framework, MSRC im-
ages are accurately segmented, however, the variation of
object appearance is less significant than for the PASCAL
2006 data set. Indeed, we observed that the simple pure
patch-based classification already performs well for these
images.

5.4 Quantitative Results

Here, we first briefly present results on the MSRC data set,
before turning to the PASCAL VOC 2007 data set.
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Fig. 7 Left: comparison between 5 k-means vocabularies and 5 trees based vocabulary. Right: influence on the number of vocabularies for k-means

Fig. 8 Influence of the number of leaves per tree (left) and of the number of trees (right), on the accuracy of the final segmentation

Method Nodes Time (s)

k-means – 2507
Trees 100 tests 1342
Trees 50 tests 706
Trees 20 tests 301
Trees 10 tests 174
Trees 1 test 34

Fig. 9 Left: influence of the number of tests for each node on the quality of the final segmentation. Right: the associated computation time
compared to k-means clustering

Due to its popularity we compared our method with re-
sults recently published on the MSRC data set. Note that
the task is here different because the background is divided
into several classes (grass, building, trees, etc.) so the goal is

not figure/ground segmentation but full segmentation of im-
ages. As our method models instances as geometrical clus-
ters of patches, it is not designed to deal with large back-
ground regions (stuff) surrounding these objects. That is
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Fig. 10 Examples of segmentation obtained by our method on the
Graz-02, PASCAL VOC 2006, and MSRC data sets (best viewed in
color). For the last a color coding is used for the classes: building (B),
car (C), grass (G), road (R), sky (S), and tree (T). For some classes

(e.g. cats) category models are learned from bounding boxes only. We
observe that even with complex backgrounds, the amount of confusion
is limited

Table 1 Pixel-level classification accuracies for the 13 object categories of the MSRC data set, i.e. percentage of pixels correctly recognized

Cow Sheep Aeroplane Face Car Bicycle Sign Bird Chair Cat Dog Body Boat

TextonBoost (Shotton et al. 2006) 58 50 60 74 63 75 35 19 15 54 19 62 7

MFAM (Verbeek and Triggs 2007) 73 84 88 70 68 74 33 19 34 46 49 54 31

Our method 84 81 66 78 50 62 36 22 16 43 52 30 9

why here we consider only objects (things) themselves in
Table 1. It gives the classification accuracies of our algo-
rithm on the 13 object categories of the data set. More pre-
cisely, for each class the number of pixels correctly labeled
for this class is computed, divided by the total number of
pixels belonging to this class. We compared with the Tex-
tonBoost results (Shotton et al. 2006), and with the Markov
Field Aspect Model (MFAM) (Verbeek and Triggs 2007).
Our method gives comparable results, although it is not de-
signed explicitly for this kind of task.

In its past three editions, the PASCAL Visual Object
Classes (VOC) challenge has evolved to be a major platform
for comparison of current state-of-the-art methods for im-
age categorization, object detection, and segmentation. We
use this data set to evaluate our category level segmenta-
tion algorithm and compare it to state-of-the-art results. The
segmentation challenge considers generating pixel-wise seg-
mentation, i.e. the label of each pixel has to be predicted as
being an object class or the background, which is exactly the
task we consider in this paper. The experiments have been

done according to the Pascal VOC 2007 protocol. We com-
pute the average segmentation accuracy across the twenty
classes and the background class. The segmentation accu-
racy, for each class, is the number of correctly labeled pixels
of that class divided by the true total number of pixels of that
class (Everingham et al. 2007).

To estimate the model parameters, we use all annotations;
both segmentation masks and bounding boxes. The training
is done in two steps. First a rough initial model of object cat-
egories is learned from the segmented training images only.
We then use the remaining training images to refine the ini-
tial model. To this end, we use our initial model to segment
the images for which only the bounding box is given. This
is done by running our segmentation algorithm, while rep-
resenting each object bounding box by a single blob in our
model; fixing the blob’s spatial model and category label
to values given by the bounding box. We only estimate the
patch labels and color models given these constraints. This
gives us new series of more accurate annotations, which we
use to re-estimate the category level appearance models. We
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Fig. 11 Examples of additional annotations (segmentation masks) automatically produced for the unsegmented training images, obtained by
applying our algorithm on the provided bounding boxes (best viewed in color, with color coding shown in Fig. 13)

experimentally confirmed that these automatically produced
annotations are reliable; examples of produced segmentation
masks are illustrated in Fig. 11.

When processing test images, the number and classes of
objects present in an image is not known. With the rela-
tively large number of possible classes, we observed (results
are given below) that initializing the algorithm with local
patch predictor, as we have done before, is not enough to ob-
tain good results. We then tried to use a template matching
based detector, and noticed that this significantly improved
the segmentation accuracy. More precisely, we used the IN-
RIA_PlusClass detector (Everingham et al. 2007) to initial-
ize the blob positions and labels. This is a detector based on
a sliding window approach including a linear SVM classi-
fier and image descriptors based on histograms of oriented
gradients (Dalal et al. 2006). When reporting our results, we
use ‘DI’ to denote the use of this Detector for the Initializa-
tion. The Naive Initialization, based on patch predictions is
denoted ‘NI’.

In addition to these two types of initialization, we also
evaluated how much the segmentation of unsegmented train-
ing images helps to segment test images. We compare our
method trained with only the 422 segmented training im-
ages, denoted ‘ST’, and trained with the full training set of
more than 5000 images including additional segmentation
masks generated by our algorithm, denoted ‘FT’.

Thus, we have four possible combinations, that have
been evaluated; results obtained on the 20 classes of the
VOC 2007 are given Table 2. We also report the best seg-
mentation result submitted to the VOC 2007 competition,
as well as the best result obtained using detection algo-
rithms, in which case the segmentation is simply given by
the predicted object bounding box. Finally we report re-
sults obtained by three methods proposed since the chal-
lenge (Csurka and Perronnin 2008; Pantofaru et al. 2008;
Shotton et al. 2008).

From these results, we can draw several conclusions.
First, we see that for nearly all classes including training im-

ages with bounding box annotations (FT) brings a clear im-
provement. Second, the results demonstrate the importance
of good initializations using the detector results (DI). Us-
ing the detector gives an overall improvement of about 20%
mean accuracy. This can be explained by the large num-
ber of classes involved in the segmentation task. The de-
tection algorithm proposes relevant candidates, which are
then validated and refined by the segmentation algorithm.
For some classes, like table or dog, the results are better
with the naive initialization; for these classes the detector
often fails. This behavior was also observed in (Shotton et
al. 2008), where the use of a detector also improved the ac-
curacy of their method by 20%. They used the TKK de-
tector (Everingham et al. 2007) which outperformed our
INRIA_PlusClass detector and thus obtained slightly bet-
ter segmentation results. Third, we clearly outperform the
best methods that entered in the challenge and have compa-
rable or better results than the one proposed after the chal-
lenge (Csurka and Perronnin 2008; Pantofaru et al. 2008;
Shotton et al. 2008). We note that (Csurka and Perronnin
2008) uses a global image classifier which also guides the
segmentation algorithm, this follows the same intuition as
using the object detector.

In order to better understand the role of the detector,
Fig. 12 illustrates the behavior of the model on some im-
ages. Starting from the initial detections (first column), the
segmentation method validates the object hypotheses and re-
fines the object boundaries in most of the cases (segmenta-
tion results shown in the third column). This can be com-
pared to the results obtained using local patch predictor ini-
tialization (last column). For the third image, we can clearly
see both a bicycle and a motorbike detection. From these
competing hypotheses the segmentation selects the bicycle.
We can also see that some obvious false detections, like the
person in the third image, are mostly discarded.
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Table 2 Segmentation accuracy (i.e. pixel-level classification accu-
racy) on the PASCAL VOC 2007 data set. The first four rows give the
results obtained with our method using the full training set (FT), the
small training set (ST), detector based initialization (DI), and naive
initialization (NI). The two following rows give best results among

the submitted segmentation and detection methods respectively. The
remaining rows correspond to methods proposed since the challenge.
In (Csurka and Perronnin 2008) only the performance averaged over
all classes is reported at 39.8

Backgrd Plane Bicycle Bird Boat Bottle Bus Car Plant Sheep Sofa

FT+DI 49.4 20.5 70.4 23.5 16.5 28.7 22.7 58.4 22.0 23.7 27.9

ST+DI 57.2 13.6 35.1 19.6 10.6 23.8 16.8 56.8 14.4 17.8 24.1

FT+NI 15.0 17.7 9.4 1.6 15.9 4.8 10.2 25.1 38.0 8.9 4.2

ST+NI 21.0 11.7 10.0 3.6 15.5 8.7 10.7 17.4 3.4 8.5 8.7

Brookes 77.7 5.5 0.0 0.4 0.4 0.0 8.6 5.2 2.3 2.3 0.3

TKK 22.9 18.8 20.7 5.2 16.1 3.1 1.2 78.3 64.7 30.2 34.6

Texton forests (Shotton et al. 2008) DI 22 77 45 45 19 14 45 48 40 42 10

Texton forests (Shotton et al. 2008) NI 33 46 5 14 11 14 34 8 19 19 8

Multiple segmentation (Pantofaru et al. 2008) 59 27 1 8 2 1 32 14 11 26 1

Cat Chair Cow Table Dog Horse Moto Person Train Monitor Mean

FT+DI 65.5 28.2 10.4 0.9 3.7 65.4 51.8 60.1 65.2 65.5 37.2

ST+DI 63.1 25.0 10.6 0.6 4.0 41.2 55.3 64.1 46.2 59.7 31.4

FT+NI 15.2 23.8 7.5 10.6 20.7 15.7 21.9 27.6 4.9 17.5 15.1

ST+NI 7.4 21.2 7.8 5.8 15.7 14.3 11.3 40.5 3.9 18.1 12.6

Brookes 9.6 1.4 1.7 10.6 0.3 5.9 6.1 28.8 10.6 0.7 8.5

TKK 1.1 2.5 0.8 23.4 69.4 44.4 42.1 0.0 89.3 70.6 30.4

Texton forests (Shotton et al. 2008) DI 29 26 20 59 45 54 63 37 68 72 42

Texton forests (Shotton et al. 2008) NI 6 3 10 39 40 28 23 32 24 9 20

Multiple segmentation (Pantofaru et al. 2008) 14 4 8 32 9 24 15 81 28 17 20

Fig. 12 Three example images from PASCAL VOC 2007. From left
to right: (i) the original image with the detector results superimposed,
(ii) category assignments after a few iterations, (iii) the final segmen-

tation result produced from this initialization, (iv) class labels from
patch-level initialization, and (v) the final result obtained using this ini-
tialization (best viewed in color, with color coding shown in Fig. 13)
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Fig. 13 Illustration of instance based segmentation. The role of the Dirichlet process prior and the detector, together with explanation of failures
are described in the text. Ellipses represent blobs, and the color coding used in three of the images is shown on the right

5.5 Instance Based Segmentation and Limits of the Method

Most evaluation campaigns only consider category level
segmentation; instance based segmentation is usually not
considered. The strength of our model lies in its ability
to identify single object instances. Modeling different in-
stances of the same category individually is of particular in-
terest because it allows to fit an appearance model to each
instance and make its description even more precise. This is
illustrated in the first column of Fig. 13, where two different
car instances, with different colors, can each benefit from
an accurate color appearance model. In this example, the
Dirichlet process prior favors the creation of a second blob.

However, when objects are too close, the estimation of
the number of instances fails, and multiple objects which
are close to each other, or which are too similar to each
other are considered as a single instance. See for example
the two cows presented Fig. 1 which are grouped in a single
object. This behavior of our model can be explained by the
fact that the Dirichlet process prior tends to limit the num-
ber of regions per image; unless there is enough evidence
due to different appearances that are spatially coherent. In
these situations an external object detector can be valuable
to initialize our model with good estimate of the number of
instances per category. See for example the second column
of Fig. 13, in this image the detector returned multiple in-
stances allowing the segmentation of the correct number of
people. As a comparison, we considered for each class of the
PASCAL VOC 2007 data set, images containing at least an
instance of this category and computed the average number
of instances per image, within this subset. Our model pro-
duces an average of 1.73 while the ground truth shows an
average of 1.63 instances per image.

We have seen in Fig. 12 that mistakes made by the detec-
tor can be recovered by the segmentation algorithm. This is
not always possible, cf. the second column of Fig. 13, where
a person in the crowd was detected as a cat, or on the second

line of Fig. 12 where a dog was confused with a cat. As a last
example, the third column of Fig. 13 shows a sofa which is
detected as a car, this hypothesis being more consistent with
its context. Another problem for most detection methods, is
the detection of multiple instances where in reality there is
only one. In particular, this happens for unusually big ob-
jects, and the segmentation method does not always recover
from such initializations. This is the case in the last column
of Fig. 13.

6 Discussion and Conclusions

We conclude this paper with a discussion of our model, and
indicate extensions to overcome some of its limitations.

Segmentation is commonly considered as an isolated
problem: a given image has to be segmented in some ‘mean-
ingful’ manner, without any supplementary information.
Where ‘meaningful’ is often understood as segmenting at
the level of objects, or their constituent parts. Much early
work on segmentation tried to solve the task at a local level;
clearly such methods can not resolve ambiguities in the lo-
cal image features. Semantic grouping is required within the
segmentation process, and category-level recognition can
provide the necessary cues for this. Similarly, recognition re-
quires accurate segmentation to avoid distraction from back-
ground clutter and occluding objects. Our model couples
these two processes, and the parameters of its category ap-
pearance models are estimated from manually segmented
images. The estimated category models can then be applied
to segment new instances of the same categories in other
images.

Robust category-level recognition requires dealing with
intra-class variations and imaging conditions such as occlu-
sions, illumination changes, view point and scale variations.
Our choice of patch descriptors ensures some level of in-
variance to illumination changes. Where some methods rely
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on rigid shape models for recognition, ours relies on a bag-
of-words representation which are intrinsically robust to oc-
clusions and non-rigid deformations. Our blob model does
not impose hard constraints between object parts, but does
implement accumulation of evidence on the object position
and size to guide the assignment from patches to objects.
The Dirichlet process over patch-to-blob assignments in our
model is interesting because it introduces dependencies at an
automatically adapted scale, which is determined by the size
and number of the blobs. We can imagine using multi-scale
patches which would probably improve the recognition abil-
ity of the model but increase its complexity.

Our experiments show the benefit of using a supplemen-
tary object category detector, which operates at a level of
bounding boxes, to improve results when segmenting many
object categories simultaneously. Note that the segmentation
that our model returns is richer than what could be obtained
using a simple combination between a detector and a color-
based segmentation method, as our model separates differ-
ent object instances and handles multiple categories per im-
age. Note that even if the final goal is to predict a class label
per pixel, and not to identify all different instances of each
category, it can be beneficial to separately model the dif-
ferent instances. This is because it allows the modeling of
instance specific appearance models, for color in our case,
which can improve the segmentation accuracy. Furthermore,
we experimentally find that we can successfully combine an-
notations in the form of pixel-level segmentation and bound-
ing boxes, the latter being much easier to produce. Adding
images annotated with bounding boxes leads to improved
segmentation results.

In future work we want to further study the interplay be-
tween the instance specific and category level appearance
models. In the current work, low-level image cues are used
by either the instance level or category level model, whereas
in principle the features used by both models do not need to
be disjoint. In particular it is interesting whether we could
learn which features are useful at the instance level and
which are useful at the category level. Furthermore, it is
worthwhile to improve the capacity of the model to distin-
guish multiple instances of the same category which are very
close to each other. Some form of geometric information
should be included in the category level appearance mod-
els to resolve such ambiguities and improve segmentation
results.
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